

Table of contents
Preface 4

Prerequisites . 4
Acknowledgements . 4
Feedback and Errata . 4
Author info . 5
License . 5
Book version . 5

Why is it needed? 6

Regular Expression modules 7
re module . 7
Compiling regular expressions . 8
bytes . 9
regex module . 9
Cheatsheet and Summary . 10
Exercises . 10

Anchors 12
String anchors . 12
Line anchors . 14
Word anchors . 15
Cheatsheet and Summary . 17
Exercises . 17

Alternation and Grouping 19
Precedence rules . 20
Cheatsheet and Summary . 22
Exercises . 22

Escaping metacharacters 24
Cheatsheet and Summary . 25
Exercises . 25

Dot metacharacter and Quantifiers 26
Dot metacharacter . 26
Greedy quantifiers . 26
Non-greedy quantifiers . 30
Possessive quantifiers . 30
Cheatsheet and Summary . 31
Exercises . 32

Working with matched portions 34
re.Match object . 34
re.findall . 35
re.finditer . 35
Cheatsheet and Summary . 36
Exercises . 36

Character class 38

2

Custom character sets . 38
Character class metacharacters . 38
Escape sequence character sets . 40
Cheatsheet and Summary . 41
Exercises . 42

Groupings and backreferences 43
Non-capturing groups . 44
Named capture groups . 45
Subexpression calls . 45
Cheatsheet and Summary . 46
Exercises . 46

Lookarounds 48
Negative lookarounds . 48
Positive lookarounds . 49
Conditional AND . 49
Variable length lookbehind . 50
Negated groups . 51
Cheatsheet and Summary . 52
Exercises . 52

Flags 54
Cheatsheet and Summary . 56
Exercises . 57

Unicode 58
Unicode character sets . 58
Cheatsheet and Summary . 59
Exercises . 59

Miscellaneous 61
Using dict . 61
re.subn . 62
\G anchor . 62
Recursive matching . 63
Named character sets . 64
Character class set operations . 65
Skipping matches . 66
Cheatsheet and Summary . 66
Exercises . 67

Gotchas 69

Further Reading 71

3

Preface

Scripting and automation tasks often need to extract particular portions of text from input data
or modify them from one format to another. This book will help you learn Regular Expressions,
a mini-programming language for all sorts of text processing needs.

The book heavily leans on examples to present features of regular expressions one by one. It is
recommended that you manually type each example and experiment with them. Understand-
ing both the nature of sample input string and the output produced is essential. As an analogy,
consider learning to drive a bike or a car - no matter how much you read about them or listen
to explanations, you need to practice a lot and infer your own conclusions. Should you feel
that copy-paste is ideal for you, code snippets are available chapter wise on GitHub.

The examples presented here have been tested with Python version 3.7.1 and may include
features not available in earlier versions. Unless otherwise noted, all examples and explana-
tions are meant for ASCII characters only. The examples are copy pasted from Python REPL
shell, but modified slightly for presentation purposes (like adding comments and blank lines,
shortened error messages, skipping import statements, etc).

Prerequisites

Prior experience working with Python, should know concepts like string formats, string meth-
ods, list comprehension and so on.

If you have prior experience with a programming language, but new to Python, check out my
GitHub repository on Python Basics before starting this book.

Acknowledgements

• Python documentation - manuals and tutorials
• /r/learnpython/ - helpful forum for beginners and experienced programmers alike
• stackoverflow - for getting answers to pertinent questions on Python and regular expres-
sions

• tex.stackexchange - for help on pandoc and tex related questions
• Cover image: draw.io, tree icon by Gopi Doraisamy under Creative Commons Attribution
3.0 Unported and wand icon by roundicons.com

• Warning and Info icons by Amada44 under public domain
• softwareengineering.stackexchange and skolakoda for programming quotes
• David Cortesi for helpful feedback on both the technical content and grammar issues
• Kye for spotting a typo

Special thanks to Al Sweigart, for introducing me to Python with his awesome automatethe-
boringstuff book and video course.

Feedback and Errata

I would highly appreciate if you’d let me know how you felt about this book, it would help to
improve this book as well as my future attempts. Also, please do let me know if you spot any

4

https://github.com/learnbyexample/py_regular_expressions/tree/master/code_snippets
https://github.com/learnbyexample/Python_Basics
https://docs.python.org/3/
https://www.reddit.com/r/learnpython/
https://stackoverflow.com/
https://tex.stackexchange.com/
https://about.draw.io/
https://www.iconfinder.com/icons/3199231/ellipse_green_nature_tree_icon
https://www.iconfinder.com/gopidoraisamy
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://www.iconfinder.com/icons/1679640/design_magic_magician_tool_wand_icon
https://www.iconfinder.com/roundicons
https://commons.wikimedia.org/wiki/File:Warning_icon.svg
https://commons.wikimedia.org/wiki/File:Info_icon_002.svg
https://commons.wikimedia.org/wiki/User:Amada44
https://softwareengineering.stackexchange.com/questions/39/whats-your-favourite-quote-about-programming
https://skolakoda.org/programming-quotes
https://leanpub.com/u/dcortesi
https://automatetheboringstuff.com/
https://automatetheboringstuff.com/

error or typo.

Issue Manager: https://github.com/learnbyexample/py_regular_expressions/issues

Goodreads: https://www.goodreads.com/book/show/47142552-python-re-gex

E-mail: learnbyexample.net@gmail.com

Twitter: https://twitter.com/learn_byexample

Author info

Sundeep Agarwal is a freelance trainer, author and mentor. His previous experience includes
working as a Design Engineer at Analog Devices for more than 5 years. You can find his other
works, primarily focused on Linux command line, text processing, scripting languages and
curated lists, at https://github.com/learnbyexample. He has also been a technical reviewer for
Command Line Fundamentals book and video course published by Packt.

List of books: https://learnbyexample.github.io/books/

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License

Code snippets are available under MIT License

Resources mentioned in Acknowledgements section above are available under original
licenses.

Book version

2.1

See Version_changes.md to track changes across book versions.

5

https://github.com/learnbyexample/py_regular_expressions/issues
https://www.goodreads.com/book/show/47142552-python-re-gex
mailto:learnbyexample.net@gmail.com
https://twitter.com/learn_byexample
https://github.com/learnbyexample
https://www.packtpub.com/application-development/command-line-fundamentals
https://learnbyexample.github.io/books/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/learnbyexample/py_regular_expressions/blob/master/LICENSE
https://github.com/learnbyexample/py_regular_expressions/blob/master/Version_changes.md

Why is it needed?

Regular Expressions is a versatile tool for text processing. You’ll find them included as part
of standard library of most programming languages that are used for scripting purposes. If
not, you can usually find a third-party library. Syntax and features of regular expressions vary
from language to language. Python’s syntax is similar to that of Perl language, but there are
significant feature differences.

The str class comes loaded with variety of methods to deal with text. So, what’s so special
about regular expressions and why would you need it? For learning and understanding pur-
poses, one can view regular expressions as a mini programming language in itself, specialized
for text processing. Parts of a regular expression can be saved for future use, analogous to
variables and functions. There are ways to perform AND, OR, NOT conditionals. Operations
similar to range function, string repetition operator and so on.

Here’s some common use cases.

• Sanitizing a string to ensure that it satisfies a known set of rules. For example, to check
if a given string matches password rules.

• Filtering or extracting portions on an abstract level like alphabets, numbers, punctuation
and so on.

• Qualified string replacement. For example, at the start or the end of a string, only whole
words, based on surrounding text, etc.

Further Reading

• The true power of regular expressions - it also includes a nice explanation of what regular
means

• softwareengineering: Is it a must for every programmer to learn regular expressions?
• softwareengineering: When you should NOT use Regular Expressions?
• codinghorror: Now You Have Two Problems
• wikipedia: Regular expression - this article includes discussion on regular expressions
as a formal language as well as details on various implementations

6

https://nikic.github.io/2012/06/15/The-true-power-of-regular-expressions.html
https://softwareengineering.stackexchange.com/questions/133968/is-it-a-must-for-every-programmer-to-learn-regular-expressions
https://softwareengineering.stackexchange.com/questions/113237/when-you-should-not-use-regular-expressions
https://blog.codinghorror.com/regular-expressions-now-you-have-two-problems/
https://en.wikipedia.org/wiki/Regular_expression

Regular Expression modules

In this chapter, you’ll get an introduction to two regular expression modules. For some ex-
amples, the equivalent normal string method is shown for comparison. Regular expression
features will be covered next chapter onwards.

re module

It is always a good idea to know where to find the documentation. The default offering for
Python regular expressions is the re standard library module. Visit docs.python: re for
information on available methods, syntax, features, examples and more. Here’s a quote:

A regular expression (or RE) specifies a set of strings that matches it; the func-
tions in this module let you check if a particular string matches a given regular
expression

First up, a simple example to test whether a string is part of another string or not. Normally,
you’d use the in operator. For regular expressions, use the re.search function. Pass
the RE as first argument and string to test against as second argument. As a good practice,
always use raw strings to construct the RE, unless other formats are required (will become
clearer in coming chapters).

>>> sentence = 'This is a sample string'

check if 'sentence' contains the given string argument
>>> 'is' in sentence
True
>>> 'xyz' in sentence
False

need to load the re module before use
>>> import re

check if 'sentence' contains the pattern described by RE argument
>>> bool(re.search(r'is', sentence))
True
>>> bool(re.search(r'xyz', sentence))
False

Before using the re module, you need to import it. Further example snippets will assume
that the module is already loaded. The return value of re.search function is a re.Match
object when a match is found and None otherwise (note that I treat re as a word, not as
r and e separately, hence the use of a instead of an). More details about the re.Match
object will be discussed in a later chapter. For presentation purposes, the examples will use
bool function to show True or False depending on whether the RE pattern matched or
not.

As Python evaluates None as False in boolean context, re.search can be used directly
in conditional expressions. See also docs.python: Truth Value Testing.

7

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/stdtypes.html#truth

>>> sentence = 'This is a sample string'
>>> if re.search(r'ring', sentence):
... print('mission success')
...
mission success

>>> if not re.search(r'xyz', sentence):
... print('mission failed')
...
mission failed

Here’s some generator expression examples.

>>> words = ['cat', 'attempt', 'tattle']

>>> [w for w in words if re.search(r'tt', w)]
['attempt', 'tattle']
>>> all(re.search(r'at', w) for w in words)
True
>>> any(re.search(r'stat', w) for w in words)
False

Compiling regular expressions

Regular expressions can be compiled using re.compile function, which gives back a
re.Pattern object. The top level re module functions are all available as methods for
such objects. Compiling a regular expression is useful if the RE has to be used in multiple
places or called upon multiple times inside a loop (speed benefit).

By default, Python maintains a small list of recently used RE, so the speed
benefit doesn’t apply for trivial use cases.

>>> pet = re.compile(r'dog')
>>> type(pet)
<class 're.Pattern'>

>>> bool(pet.search('They bought a dog'))
True
>>> bool(pet.search('A cat crossed their path'))
False

Some of the methods available for compiled patterns also accept more arguments than those
available for top level functions of the re module. For example, the search method on
a compiled pattern has two optional arguments to specify start and end index. Similar to
range function and slicing notation, the ending index has to be specified 1 greater than
desired index.

>>> sentence = 'This is a sample string'
>>> word = re.compile(r'is')

8

search for 'is' starting from 5th character of 'sentence' variable
>>> bool(word.search(sentence, 4))
True
>>> bool(word.search(sentence, 6))
False

search for 'is' between 3rd and 4th characters
>>> bool(word.search(sentence, 2, 4))
True

bytes

To work with bytes data type, the RE must be of bytes data as well. Similar to str RE,
use raw format to construct a bytes RE.

>>> byte_data = b'This is a sample string'

error message truncated for presentation purposes
>>> re.search(r'is', byte_data)
TypeError: cannot use a string pattern on a bytes-like object

>>> bool(re.search(rb'is', byte_data))
True
>>> bool(re.search(rb'xyz', byte_data))
False

regex module

The third party regex module (https://pypi.org/project/regex/) is backward-compatible with
the standard re module. The regex module also offers advanced features like those found
in Perl regular expressions.

To install the module from command line, you can use either of these depending on your usage:

• pip install regex in a virtual environment
• python3.7 -m pip install --user regex for system wide accessibility

>>> import regex
>>> sentence = 'This is a sample string'

>>> bool(regex.search(r'is', sentence))
True
>>> bool(regex.search(r'xyz', sentence))
False

By default, regex module uses VERSION0 which is compatible with the re module.
VERSION1 includes more features and its behavior may differ from the re module. Details
will be discussed later.

9

https://pypi.org/project/regex/

Cheatsheet and Summary

Note Description

docs.python: re Python standard module for regular expressions
pypi: regex 3rd party module, compatible with re , has advanced features
re.search(r'pat', s) Check if given pattern is present anywhere in input string

Output is a re.Match object, usable in conditional expressions
r-strings preferred to define RE
Additionally, Python maintains a small cache of recent RE

re.compile(r'pat') Compile a pattern for reuse, output is a re.Pattern object
re.search(rb'pat', s) Use byte pattern for byte input

You might wonder why two regular expression modules are being presented in this book. The
re module is good enough for most usecases. But if text processing occupies a large share
of your work, the extra features of regex module would certainly come in handy. It would
also make it easier to adapt from/to other programming languages. You can also consider
always using the regex module for your project instead of having to decide which one to use
depending on features required.

Exercises

Refer to exercises folder for input files required to solve the exercises.

a) For the given input file, print all lines containing the string two

note that the expected output shown here is wrapped to fit pdf width
>>> filename = 'programming_quotes.txt'
>>> word = re.compile() ##### add your solution here
>>> with open(filename, 'r') as ip_file:
... for ip_line in ip_file:
... if word.search(ip_line):
... print(ip_line, end='')
...
"Some people, when confronted with a problem, think - I know, I'll use regular
expressions. Now they have two problems" by Jamie Zawinski
"So much complexity in software comes from trying to make one thing do two
things" by Ryan Singer

b) For the given input string, print all lines NOT containing the string 2

>>> purchases = '''\
... apple 24
... mango 50
... guava 42
... onion 31
... water 10'''
>>> num = re.compile() ##### add your solution here
>>> for line in purchases.split('\n'):

10

https://docs.python.org/3/library/re.html
https://pypi.org/project/regex/
https://github.com/learnbyexample/py_regular_expressions/tree/master/exercises

... if not num.search(line):

... print(line)

...
mango 50
onion 31
water 10

11

Anchors

In this chapter, you’ll be learning about qualifying a pattern. Instead of matching anywhere
in the given input string, restrictions can be specified. For now, you’ll see the ones that are
already part of re module. In later chapters, you’ll learn how to define your own rules for
restriction.

These restrictions are made possible by assigning special meaning to certain characters and
escape sequences. The characters with special meaning are known as metacharacters in
regular expressions parlance. In case you need to match those characters literally, you need
to escape them with a \ (discussed in a later chapter).

String anchors

This restriction is about qualifying a RE to match only at the start or the end of an input string.
These provide functionality similar to the str methods startswith and endswith . First
up, the escape sequence \A which restricts the matching to the start of string.

\A is placed as a prefix to the pattern
>>> bool(re.search(r'\Acat', 'cater'))
True
>>> bool(re.search(r'\Acat', 'concatenation'))
False

>>> bool(re.search(r'\Ahi', 'hi hello\ntop spot'))
True
>>> bool(re.search(r'\Atop', 'hi hello\ntop spot'))
False

To restrict the matching to the end of string, \Z is used.

\Z is placed as a suffix to the pattern
>>> bool(re.search(r'are\Z', 'spare'))
True
>>> bool(re.search(r'are\Z', 'nearest'))
False

>>> words = ['surrender', 'unicorn', 'newer', 'door', 'empty', 'eel', 'pest']
>>> [w for w in words if re.search(r'er\Z', w)]
['surrender', 'newer']
>>> [w for w in words if re.search(r't\Z', w)]
['pest']

Combining both the start and end string anchors, you can restrict the matching to the whole
string. Similar to comparing strings using the == operator.

>>> word_pat = re.compile(r'\Acat\Z')
>>> bool(word_pat.search('cat'))
True
>>> bool(word_pat.search('cater'))
False

12

>>> bool(word_pat.search('concatenation'))
False

Use the optional start and end index arguments for search method with caution. They are
not equivalent to string slicing. For example, specifying a greater than 0 start index when
using \A is always going to return False . This is because, as far as the search method is
concerned, only the search space is narrowed and the anchor positions haven’t changed. When
slicing is used, you are creating an entirely new string object with its own anchor positions.

>>> word_pat = re.compile(r'\Aat')

>>> bool(word_pat.search('cater', 1))
False
>>> bool(word_pat.search('cater'[1:]))
True

The re.sub function performs search and replace operation similar to the normal replace
string method. Metacharacters and escape sequences differ between search and replacement
sections. It will be discussed separately in later chapters, for now only normal strings will be
used for replacements. You can emulate string concatenation operations by using the anchors
by themselves as a pattern.

insert text at the start of a string
first argument to re.sub is the search RE
second argument is the replacement value
third argument is the string value to be acted upon
>>> re.sub(r'\A', r're', 'live')
'relive'
>>> re.sub(r'\A', r're', 'send')
'resend'

appending text
>>> re.sub(r'\Z', r'er', 'cat')
'cater'
>>> re.sub(r'\Z', r'er', 'hack')
'hacker'

A common mistake, not specific to re.sub , is forgetting that strings are
immutable in Python.

>>> word = 'cater'
this will return a string object, won't modify 'word' variable
>>> re.sub(r'\Acat', r'hack', word)
'hacker'
>>> word
'cater'

need to explicitly assign the result if 'word' has to be changed
>>> word = re.sub(r'\Acat', r'hack', word)
>>> word
'hacker'

13

Line anchors

A string input may contain single or multiple lines. The newline character \n is used as the
line separator. There are two line anchors, ˆ metacharacter for matching the start of line
and $ for matching the end of line. If there are no newline characters in the input string,
these will behave same as \A and \Z respectively.

>>> pets = 'cat and dog'

>>> bool(re.search(r'^cat', pets))
True
>>> bool(re.search(r'^dog', pets))
False

>>> bool(re.search(r'dog$', pets))
True
>>> bool(re.search(r'^dog$', pets))
False

By default, the input string is considered as a single line, even if multiple newline characters
are present. In such cases, the $ metacharacter can match both the end of string and
just before the last newline character. However, \Z will always match the end of string,
irrespective of what characters are present.

>>> greeting = 'hi there\nhave a nice day\n'

>>> bool(re.search(r'day$', greeting))
True
>>> bool(re.search(r'day\n$', greeting))
True

>>> bool(re.search(r'day\Z', greeting))
False
>>> bool(re.search(r'day\n\Z', greeting))
True

To indicate that the input string should be treated as multiple lines, you need to use the
re.MULTILINE flag (or, re.M short form). The flags optional argument will be covered
in more detail later.

check if any line in the string starts with 'top'
>>> bool(re.search(r'^top', 'hi hello\ntop spot', flags=re.M))
True

check if any line in the string ends with 'ar'
>>> bool(re.search(r'ar$', 'spare\npar\ndare', flags=re.M))
True

filter all elements having lines ending with 'are'
>>> elements = ['spare\ntool', 'par\n', 'dare']
>>> [e for e in elements if re.search(r'are$', e, flags=re.M)]
['spare\ntool', 'dare']

14

check if any complete line in the string is 'par'
>>> bool(re.search(r'^par$', 'spare\npar\ndare', flags=re.M))
True

Just like string anchors, you can use the line anchors by themselves as a pattern.

note that there is no \n at the end of this input string
>>> ip_lines = 'catapults\nconcatenate\ncat'
>>> print(re.sub(r'^', r'* ', ip_lines, flags=re.M))
* catapults
* concatenate
* cat

>>> print(re.sub(r'$', r'.', ip_lines, flags=re.M))
catapults.
concatenate.
cat.

If you are dealing with Windows OS based text files, you’ll have to convert
\r\n line endings to \n first. Which is easily handled by many of the Python
functions and methods. For example, you can specify which line ending to use for
open function, the split string method handles all whitespaces by default and
so on. Or, you can handle \r as optional character with quantifiers (covered
later).

Word anchors

The third type of restriction is word anchors. Alphabets (irrespective of case), digits and the
underscore character qualify as word characters. You might wonder why there are digits and
underscores as well, why not only alphabets? This comes from variable and function naming
conventions - typically alphabets, digits and underscores are allowed. So, the definition is
more oriented to programming languages than natural ones.

The escape sequence \b denotes a word boundary. This works for both start of word and end
of word anchoring. Start of word means either the character prior to the word is a non-word
character or there is no character (start of string). Similarly, end of word means the character
after the word is a non-word character or no character (end of string). This implies that you
cannot have word boundary \b without a word character.

>>> words = 'par spar apparent spare part'

replace 'par' irrespective of where it occurs
>>> re.sub(r'par', r'X', words)
'X sX apXent sXe Xt'
replace 'par' only at start of word
>>> re.sub(r'\bpar', r'X', words)
'X spar apparent spare Xt'
replace 'par' only at end of word
>>> re.sub(r'par\b', r'X', words)
'X sX apparent spare part'

15

replace 'par' only if it is not part of another word
>>> re.sub(r'\bpar\b', r'X', words)
'X spar apparent spare part'

You can get lot more creative with using word boundary as a pattern by itself:

space separated words to double quoted csv
note the use of 'replace' string method
'translate' method can also be used
>>> words = 'par spar apparent spare part'
>>> print(re.sub(r'\b', r'"', words).replace(' ', ','))
"par","spar","apparent","spare","part"

>>> re.sub(r'\b', r' ', '-----hello-----')
'----- hello -----'

make a programming statement more readable
shown for illustration purpose only, won't work for all cases
>>> re.sub(r'\b', r' ', 'foo_baz=num1+35*42/num2')
' foo_baz = num1 + 35 * 42 / num2 '
excess space at start/end of string can be stripped off
later you'll learn how to add a qualifier so that strip is not needed
>>> re.sub(r'\b', r' ', 'foo_baz=num1+35*42/num2').strip()
'foo_baz = num1 + 35 * 42 / num2'

The word boundary has an opposite anchor too. \B matches wherever \b doesn’t match.
This duality will be seen with some other escape sequences too. Negative logic is handy in
many text processing situations. But use it with care, you might end up matching things you
didn’t intend!

>>> words = 'par spar apparent spare part'

replace 'par' if it is not start of word
>>> re.sub(r'\Bpar', r'X', words)
'par sX apXent sXe part'
replace 'par' at end of word but not whole word 'par'
>>> re.sub(r'\Bpar\b', r'X', words)
'par sX apparent spare part'
replace 'par' if it is not end of word
>>> re.sub(r'par\B', r'X', words)
'par spar apXent sXe Xt'
replace 'par' if it is surrounded by word characters
>>> re.sub(r'\Bpar\B', r'X', words)
'par spar apXent sXe part'

Here’s some standalone pattern usage to compare and contrast the two word anchors.

>>> re.sub(r'\b', r':', 'copper')
':copper:'
>>> re.sub(r'\B', r':', 'copper')
'c:o:p:p:e:r'

16

>>> re.sub(r'\b', r' ', '-----hello-----')
'----- hello -----'
>>> re.sub(r'\B', r' ', '-----hello-----')
' - - - - -h e l l o- - - - - '

Cheatsheet and Summary

Note Description

\A restricts the match to start of string
\Z restricts the match to end of string
re.sub(r'pat', r'replace', s) search and replace
\n line separator, dos-style files need special attention
metacharacter characters with special meaning in RE
ˆ restricts the match to start of line
$ restricts the match to end of line
re.MULTILINE or re.M flag to treat input as multiline string
\b restricts the match to start/end of words

word characters: alphabets, digits, underscore
\B matches wherever \b doesn’t match

In this chapter, you’ve begun to see building blocks of regular expressions and how they can
be used in interesting ways. But at the same time, regular expression is but another tool in the
land of text processing. Often, you’d get simpler solution by combining regular expressions
with other string methods and comprehensions. Practice, experience and imagination would
help you construct creative solutions. In coming chapters, you’ll see more applications of
anchors as well as the \G anchor which is best understood in combination with other regular
expression features.

Exercises

a) For the given url, count the total number of lines that contain is or the as whole words.
Note that each line in the for loop will be of bytes data type.

>>> import urllib.request
>>> scarlet_pimpernel_link = r'https://www.gutenberg.org/cache/epub/60/pg60.txt'
>>> word1 = re.compile() ##### add your solution here
>>> word2 = re.compile() ##### add your solution here
>>> count = 0
>>> with urllib.request.urlopen(scarlet_pimpernel_link) as ip_file:
... for line in ip_file:
... if word1.search(line) or word2.search(line):
... count += 1
...
>>> print(count)
3737

17

b) For the given input string, change only whole word red to brown

>>> words = 'bred red spread credible'

>>> re.sub() ##### add your solution here
'bred brown spread credible'

c) For the given input list, filter all elements that contains 42 surrounded by word characters.

>>> words = ['hi42bye', 'nice1423', 'bad42', 'cool_42a', 'fake4b']

>>> [w for w in words if re.search()] ##### add your solution here
['hi42bye', 'nice1423', 'cool_42a']

d) For the given input list, filter all elements that start with den or end with ly

>>> foo = ['lovely', '1 dentist', '2 lonely', 'eden', 'fly away', 'dent']

>>> [e for e in foo if] ##### add your solution here
['lovely', '2 lonely', 'dent']

e) For the given input string, change whole word mall only if it is at start of line.

>>> para = '''\
... ball fall wall tall
... mall call ball pall
... wall mall ball fall'''

>>> print(re.sub()) ##### add your solution here
ball fall wall tall
1234 call ball pall
wall mall ball fall

18

Alternation and Grouping

Many a times, you’d want to search for multiple terms. In a conditional expression, you can
use the logical operators to combine multiple conditions. With regular expressions, the |
metacharacter is similar to logical OR. The RE will match if any of the expression separated
by | is satisfied. These can have their own independent anchors as well.

match either 'cat' or 'dog'
>>> bool(re.search(r'cat|dog', 'I like cats'))
True
>>> bool(re.search(r'cat|dog', 'I like dogs'))
True
>>> bool(re.search(r'cat|dog', 'I like parrots'))
False

replace either 'cat' at start of string or 'cat' at end of word
>>> re.sub(r'\Acat|cat\b', r'X', 'catapults concatenate cat scat')
'Xapults concatenate X sX'

replace either 'cat' or 'dog' or 'fox' with 'mammal'
>>> re.sub(r'cat|dog|fox', r'mammal', 'cat dog bee parrot fox')
'mammal mammal bee parrot mammal'

You might infer from above examples that there can be cases where many alternations are
required. The join string method can be used to build the alternation list automatically
from an iterable of strings.

>>> '|'.join(['car', 'jeep'])
'car|jeep'

>>> words = ['cat', 'dog', 'fox']
>>> '|'.join(words)
'cat|dog|fox'

>>> re.sub('|'.join(words), r'mammal', 'cat dog bee parrot fox')
'mammal mammal bee parrot mammal'

Often, there are some common things among the RE alternatives. It could be common charac-
ters or qualifiers like the anchors. In such cases, you can group them using a pair of parenthe-
ses metacharacters. Similar to a(b+c)d = abd+acd in maths, you get a(b|c)d = abd|acd
in regular expressions.

without grouping
>>> re.sub(r'reform|rest', r'X', 'red reform read arrest')
'red X read arX'
with grouping
>>> re.sub(r're(form|st)', r'X', 'red reform read arrest')
'red X read arX'

without grouping
>>> re.sub(r'\bpar\b|\bpart\b', r'X', 'par spare part party')

19

'X spare X party'
taking out common anchors
>>> re.sub(r'\b(par|part)\b', r'X', 'par spare part party')
'X spare X party'
taking out common characters as well
you'll later learn a better technique instead of using empty alternate
>>> re.sub(r'\bpar(|t)\b', r'X', 'par spare part party')
'X spare X party'

There’s lot more features to grouping than just forming terser RE. For now, this is a good place
to show how to incorporate normal strings (could be a variable, result from an expression, etc)
while building a regular expression. For example, adding anchors to alternation list created
using the join method.

>>> words = ['cat', 'par']
>>> '|'.join(words)
'cat|par'
without word boundaries, any matching portion will be replaced
>>> re.sub('|'.join(words), r'X', 'cater cat concatenate par spare')
'Xer X conXenate X sXe'

note how raw string is used on either side of concatenation
avoid f-strings unless you know how to compensate for RE
>>> alt = re.compile(r'\b(' + '|'.join(words) + r')\b')
only whole words will be replaced now
>>> alt.sub(r'X', 'cater cat concatenate par spare')
'cater X concatenate X spare'

this is how the above RE looks as a normal string
>>> alt.pattern
'\\b(cat|par)\\b'
>>> alt.pattern == r'\b(cat|par)\b'
True

In the above examples with join method, the string iterable elements do not contain any
special regular expression characters. How to deal with strings that have metacharacters will
be discussed in a later chapter.

Precedence rules

There’s some tricky situations when using alternation. If it is used for testing a match to get
True/False against a string input, there is no ambiguity. However, for other things like string
replacement, it depends on a few factors. Say, you want to replace either are or spared -
which one should get precedence? The bigger word spared or the substring are inside it
or based on something else?

In Python, the alternative which matches earliest in the input string gets precedence.
re.Match object is used in the examples below for illustration.

20

>>> words = 'lion elephant are rope not'

span shows the start and end+1 index of matched portion
match shows the text that satisfied the search criteria
>>> re.search(r'on', words)
<re.Match object; span=(2, 4), match='on'>
>>> re.search(r'ant', words)
<re.Match object; span=(10, 13), match='ant'>

starting index of 'on' < index of 'ant' for given string input
so 'on' will be replaced irrespective of order
count optional argument here restricts no. of replacements to 1
>>> re.sub(r'on|ant', r'X', words, count=1)
'liX elephant are rope not'
>>> re.sub(r'ant|on', r'X', words, count=1)
'liX elephant are rope not'

What happens if alternatives match on same index? The precedence is then left to right in the
order of declaration.

>>> mood = 'best years'
>>> re.search(r'year', mood)
<re.Match object; span=(5, 9), match='year'>
>>> re.search(r'years', mood)
<re.Match object; span=(5, 10), match='years'>

starting index for 'year' and 'years' will always be same
so, which one gets replaced depends on the order of alternation
>>> re.sub(r'year|years', r'X', mood, count=1)
'best Xs'
>>> re.sub(r'years|year', r'X', mood, count=1)
'best X'

Another example (without count restriction) to drive home the issue:

>>> words = 'ear xerox at mare part learn eye'

this is going to be same as: r'ar'
>>> re.sub(r'ar|are|art', r'X', words)
'eX xerox at mXe pXt leXn eye'
this is going to be same as: r'are|ar'
>>> re.sub(r'are|ar|art', r'X', words)
'eX xerox at mX pXt leXn eye'
phew, finally this one works as needed
>>> re.sub(r'are|art|ar', r'X', words)
'eX xerox at mX pX leXn eye'

If you do not want substrings to sabotage your replacements, a robust workaround is to sort
the alternations based on length, longest first.

21

>>> words = ['hand', 'handy', 'handful']
>>> alt = re.compile('|'.join(sorted(words, key=len, reverse=True)))
>>> alt.pattern
'handful|handy|hand'

>>> alt.sub(r'X', 'hands handful handed handy')
'Xs X Xed X'
without sorting, alternation order will come into play
>>> re.sub('|'.join(words), r'X', 'hands handful handed handy')
'Xs Xful Xed Xy'

Cheatsheet and Summary

Note Description

| multiple RE combined as conditional OR
each alternative can have independent anchors

'|'.join(iterable) programmatically combine multiple RE
() group pattern(s)
a(b|c)d same as abd|acd
Alternation precedence pattern which matches earliest in the input gets precedence

tie-breaker is left to right if patterns have same starting location
robust solution: sort the alternations based on length, longest first
'|'.join(sorted(iterable, key=len, reverse=True))

So, this chapter was about specifying one or more alternate matches within the same RE using
| metacharacter. Which can further be simplified using () grouping if the alternations
have common aspects. Among the alternations, earliest matching pattern gets precedence.
Left to right ordering is used as a tie-breaker if multiple alternations match starting from
same location. You also learnt ways to programmatically construct a RE.

Exercises

a) For the given input list, filter all elements that start with den or end with ly

>>> foo = ['lovely', '1 dentist', '2 lonely', 'eden', 'fly away', 'dent']

>>> [e for e in foo if] ##### add your solution here
['lovely', '2 lonely', 'dent']

b) For the given url, count the total number of lines that contain removed or rested or
received or replied or refused or retired as whole words. Note that each line
in the for loop will be of bytes data type.

>>> import urllib.request
>>> scarlet_pimpernel_link = r'https://www.gutenberg.org/cache/epub/60/pg60.txt'
>>> words = re.compile() ##### add your solution here

22

>>> count = 0
>>> with urllib.request.urlopen(scarlet_pimpernel_link) as ip_file:
... for line in ip_file:
... if words.search(line):
... count += 1
...
>>> print(count)
83

23

Escaping metacharacters

You have seen a fewmetacharacters and escape sequences that help to compose a RE. Tomatch
the metacharacters literally, i.e. to remove their special meaning, prefix those characters with
a \ character. To indicate a literal \ character, use \\ . Assuming these are all part of
raw string, not normal strings.

even though ^ is not being used as anchor, it won't be matched literally
>>> bool(re.search(r'b^2', 'a^2 + b^2 - C*3'))
False
escaping will work
>>> bool(re.search(r'b\^2', 'a^2 + b^2 - C*3'))
True

match (or) literally
>>> re.sub(r'\(|\)', r'', '(a*b) + c')
'a*b + c'

note that here input string is also a raw string
>>> re.sub(r'\\', r'/', r'\learn\by\example')
'/learn/by/example'

As emphasized earlier, regular expressions is just another tool to process text. Some examples
and exercises presented in this book can be solved using normal string methods as well. For
real world use cases, ask yourself if regular expressions is needed at all?

>>> eqn = 'f*(a^b) - 3*(a^b)'

straightforward search and replace, no need RE shenanigans
>>> eqn.replace('(a^b)', 'c')
'f*c - 3*c'

Okay, what if you have a string variable that must be used to construct a RE - how to escape all
the metacharacters? Relax, re.escape function has got you covered. No need to manually
take care of all the metacharacters or worry about changes in future versions.

>>> expr = '(a^b)'
print used here to show results similar to raw string
>>> print(re.escape(expr))
\(a\^b\)

replace only at end of string
>>> re.sub(re.escape(expr) + r'\Z', r'c', eqn)
'f*(a^b) - 3*c'

if strings are to be matched literally,
need to use re.escape for each string when creating alternations
>>> terms = ['foo_baz', expr]
>>> print('|'.join(re.escape(w) for w in terms))
foo_baz|\(a\^b\)

24

Cheatsheet and Summary

Note Description

\ prefix metacharacters with \ to match them literally
\\ to match \ literally
re.escape('string') automatically escape all metacharacters

This was a short chapter to show how to match metacharacters literally. And how re.escape
helps if you are using input strings sourced from elsewhere to build the final RE.

Exercises

a) Transform the given input strings to the expected output using same logic on both strings.

>>> str1 = '(9-2)*5+qty/3'
>>> str2 = '(qty+4)/2-(9-2)*5+pq/4'

>>> ##### add your solution here for str1
'35+qty/3'
>>> ##### add your solution here for str2
'(qty+4)/2-35+pq/4'

b) Replace any matching item from the given list with X for given the input strings.

>>> items = ['a.b', '3+n', r'x\y\z', 'qty||price', '{n}']
>>> alt_re = re.compile() ##### add your solution here

>>> alt_re.sub(r'X', '0a.bcd')
'0Xcd'
>>> alt_re.sub(r'X', 'E{n}AMPLE')
'EXAMPLE'
>>> alt_re.sub(r'X', r'43+n2 ax\y\ze')
'4X2 aXe'

25

Dot metacharacter and Quantifiers

This chapter introduces several more metacharacters. Similar to string repetition operator,
quantifiers allow to repeat a portion of regular expression pattern and thus make it compact
and improve readability. Quantifiers can also be specified as both bounded and unbounded
ranges to match varying quantities of the pattern. Previously, you used alternation to con-
struct conditional OR. Adding dot metacharacter and quantifiers to the mix, you can construct
conditional AND.

Dot metacharacter

The dot metacharacter serves as a placeholder to match any character except the newline
character. In later chapters, you’ll learn how to include the newline character and define your
own custom placeholder for limited set of characters.

matches character 'c', any character and then character 't'
>>> re.sub(r'c.t', r'X', 'tac tin cat abc;tuv acute')
'taXin X abXuv aXe'

matches character 'r', any two characters and then character 'd'
>>> re.sub(r'r..d', r'X', 'breadth markedly reported overrides')
'bXth maXly repoX oveXes'

matches character '2', any character and then character '3'
>>> re.sub(r'2.3', r'8', '42\t35')
'485'

Greedy quantifiers

Quantifiers have functionality like the string repetition operator and range function. They can
be applied to both characters and groupings. Apart from ability to specify exact quantity and
bounded range, these can also match unbounded varying quantities. If the input string can
satisfy a pattern with varying quantities in multiple ways, you can choose among three types of
quantifiers to narrow down possibilities. In this section, greedy type of quantifiers is covered.

First up, the ? metacharacter which quantifies a character or group to match 0 or 1
times. This helps to define optional patterns and build terser RE compared to groupings for
some cases.

same as: r'ear|ar'
>>> re.sub(r'e?ar', r'X', 'far feat flare fear')
'fX feat flXe fX'

same as: r'\bpar(t|)\b'
>>> re.sub(r'\bpart?\b', r'X', 'par spare part party')
'X spare X party'

same as: r'\b(re.d|red)\b'
>>> words = ['red', 'read', 'ready', 're;d', 'redo', 'reed']

26

>>> [w for w in words if re.search(r'\bre.?d\b', w)]
['red', 'read', 're;d', 'reed']

same as: r'part|parrot'
>>> re.sub(r'par(ro)?t', r'X', 'par part parrot parent')
'par X X parent'
same as: r'part|parrot|parent'
>>> re.sub(r'par(en|ro)?t', r'X', 'par part parrot parent')
'par X X X'

The * metacharacter quantifies a character or group to match 0 or more times. There is
no upper bound, more details will be discussed at the end of this section.

match 't' followed by zero or more of 'a' followed by 'r'
>>> re.sub(r'ta*r', r'X', 'tr tear tare steer sitaara')
'X tear Xe steer siXa'
match 't' followed by zero or more of 'e' or 'a' followed by 'r'
>>> re.sub(r't(e|a)*r', r'X', 'tr tear tare steer sitaara')
'X X Xe sX siXa'
match zero or more of '1' followed by '2'
>>> re.sub(r'1*2', r'X', '3111111111125111142')
'3X511114X'

Time to introduce re.split function:

last element is empty because there is nothing between 511114 and 2
>>> re.split(r'1*2', '3111111111125111142')
['3', '511114', '']

optional argument maxsplit specifies how many times to split
later, you'll see how to get behavior like the str.partition method
>>> re.split(r'1*2', '3111111111125111142', maxsplit=1)
['3', '5111142']

empty string matches at start and end of string
it matches between every character
and, there is an empty match after the split at u
>>> re.split(r'u*', 'cloudy')
['', 'c', 'l', 'o', '', 'd', 'y', '']

The + metacharacter quantifies a character or group to match 1 or more times. Similar
to * quantifier, there is no upper bound. More importantly, this doesn’t have surprises like
matching empty string in between patterns or at start/end of string.

>>> re.sub(r'ta+r', r'X', 'tr tear tare steer sitaara')
'tr tear Xe steer siXa'
>>> re.sub(r't(e|a)+r', r'X', 'tr tear tare steer sitaara')
'tr X Xe sX siXa'

>>> re.sub(r'1+2', r'X', '3111111111125111142')
'3X5111142'

27

>>> re.split(r'1+', '3111111111125111142')
['3', '25', '42']
>>> re.split(r'u+', 'cloudy')
['clo', 'dy']

You can specify a range of integer numbers, both bounded and unbounded, using {}
metacharacters. There are four ways to use this quantifier as shown below:

Pattern Description

{m,n} match m to n times
{m,} match at least m times
{,n} match up to n times (including 0 times)
{n} match exactly n times

>>> demo = ['abc', 'ac', 'adc', 'abbc', 'xabbbcz', 'bbb', 'bc', 'abbbbbc']

>>> [w for w in demo if re.search(r'ab{1,4}c', w)]
['abc', 'abbc', 'xabbbcz']
>>> [w for w in demo if re.search(r'ab{3,}c', w)]
['xabbbcz', 'abbbbbc']
>>> [w for w in demo if re.search(r'ab{,2}c', w)]
['abc', 'ac', 'abbc']
>>> [w for w in demo if re.search(r'ab{3}c', w)]
['xabbbcz']

The {} metacharacters have to be escaped to match them literally. However,
unlike () metacharacters, these have lot more leeway. For example, escaping
{ alone is enough, or if it doesn’t conform strictly to any of the four forms listed
above, escaping is not needed at all.

Next up, how to construct conditional AND using dot metacharacter and quantifiers.

match 'Error' followed by zero or more characters followed by 'valid'
>>> bool(re.search(r'Error.*valid', 'Error: not a valid input'))
True

>>> bool(re.search(r'Error.*valid', 'Error: key not found'))
False

To allow matching in any order, you’ll have to bring in alternation as well. That is somewhat
manageable for 2 or 3 patterns. In a later chapter, you’ll learn how to use lookarounds for a
comparatively easier approach.

>>> seq1 = 'cat and dog'
>>> seq2 = 'dog and cat'
>>> bool(re.search(r'cat.*dog|dog.*cat', seq1))
True
>>> bool(re.search(r'cat.*dog|dog.*cat', seq2))
True

28

if you just need True/False result, this would be a scalable approach
>>> patterns = (r'cat', r'dog')
>>> all(re.search(p, seq1) for p in patterns)
True
>>> all(re.search(p, seq2) for p in patterns)
True

So, how much do these greedy quantifiers match? When you are using ? how does Python
decide to match 0 or 1 times, if both quantities can satisfy the RE? For example, consider
the expression re.sub(r'f.?o', r'X', 'foot') - should foo be replaced or fo ? It will
always replace foo , because these are greedy quantifiers, meaning longest match wins.

>>> re.sub(r'f.?o', r'X', 'foot')
'Xt'

a more practical example
prefix '<' with '\' if it is not already prefixed
>>> print(re.sub(r'\\?<', r'\<', r'blah \< foo < bar \< blah < baz'))
blah \< foo \< bar \< blah \< baz

say goodbye to r'handful|handy|hand' shenanigans
>>> re.sub(r'hand(y|ful)?', r'X', 'hand handy handful')
'X X X'

But wait, how did r'Error.*valid' example work? Shouldn’t .* consume all the charac-
ters after Error ? Good question. The regular expression engine actually does consume all
the characters. Then realizing that the RE fails, it gives back one character from end of string
and checks again if RE is satisfied. This process is repeated until a match is found or failure
is confirmed. In regular expression parlance, this is called backtracking. And can be quite
time consuming for certain corner cases. Or even catastrophic, see cloudflare: Details of the
Cloudflare outage on July 2, 2019.

>>> sentence = 'that is quite a fabricated tale'

r't.*a' will always match from first 't' to last 'a'
also, note that count argument is set to 1 for illustration purposes
>>> re.sub(r't.*a', r'X', sentence, count=1)
'Xle'
>>> re.sub(r't.*a', r'X', 'star', count=1)
'sXr'

matching first 't' to last 'a' for t.*a won't work for these cases
the engine backtracks until .*q matches and so on
>>> re.sub(r't.*a.*q.*f', r'X', sentence, count=1)
'Xabricated tale'
>>> re.sub(r't.*a.*u', r'X', sentence, count=1)
'Xite a fabricated tale'

29

https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Non-greedy quantifiers

As the name implies, these quantifiers will try to match as minimally as possible. Also known as
lazy or reluctant quantifiers. Appending a ? to greedy quantifiers makes them non-greedy.

>>> re.sub(r'f.??o', r'X', 'foot', count=1)
'Xot'

>>> re.sub(r'f.??o', r'X', 'frost', count=1)
'Xst'

>>> re.sub(r'.{2,5}?', r'X', '123456789', count=1)
'X3456789'

Like greedy quantifiers, lazy quantifiers will try to satisfy the overall RE.

>>> sentence = 'that is quite a fabricated tale'

r't.*?a' will always match from first 't' to first 'a'
>>> re.sub(r't.*?a', r'X', sentence, count=1)
'Xt is quite a fabricated tale'

matching first 't' to first 'a' for t.*?a won't work for this case
so, engine will move forward until .*?f matches and so on
>>> re.sub(r't.*?a.*?f', r'X', sentence, count=1)
'Xabricated tale'

Possessive quantifiers

This feature is not present in re module, but is offered by the regex module.

Appending a + to greedy quantifiers makes them possessive. These are like greedy quanti-
fiers, but without the backtracking. So, something like r'Error.*+valid' will never match
because .*+ will consume all the remaining characters. If both greedy and possessive quanti-
fier versions are functionally equivalent, then possessive is preferred because it will fail faster
for non-matching cases. In a later chapter, you’ll see an example where a RE will only work
with possessive quantifier, but not if greedy quantifier is used.

>>> import regex
>>> demo = ['abc', 'ac', 'adc', 'abbc', 'xabbbcz', 'bbb', 'bc', 'abbbbbc']

functionally equivalent greedy and possessive versions
>>> [w for w in demo if regex.search(r'ab*c', w)]
['abc', 'ac', 'abbc', 'xabbbcz', 'abbbbbc']
>>> [w for w in demo if regex.search(r'ab*+c', w)]
['abc', 'ac', 'abbc', 'xabbbcz', 'abbbbbc']

different results
>>> regex.sub(r'f(a|e)*at', r'X', 'feat ft feaeat')
'X ft X'

30

(a|e)*+ would match 'a' or 'e' as much as possible
no backtracking, so another 'a' can never match
>>> regex.sub(r'f(a|e)*+at', r'X', 'feat ft feaeat')
'feat ft feaeat'

The effect of possessive quantifier can also be expressed using atomic grouping. The syntax
is (?>pat) , where pat is an abbreviation for a portion of regular expression pattern. In
later chapters you’ll see more such special groupings.

same as: r'(b|o)++'
>>> regex.sub(r'(?>(b|o)+)', r'X', 'abbbc foooooot')
'aXc fXt'
same as: r'f(a|e)*+at'
>>> regex.sub(r'f(?>(a|e)*)at', r'X', 'feat ft feaeat')
'feat ft feaeat'

Cheatsheet and Summary

Note Description

. match any character except the newline character
greedy match as much as possible
? greedy quantifier, match 0 or 1 times
* greedy quantifier, match 0 or more times
+ greedy quantifier, match 1 or more times
{m,n} greedy quantifier, match m to n times
{m,} greedy quantifier, match at least m times
{,n} greedy quantifier, match up to n times (including 0 times)
{n} greedy quantifier, match exactly n times
pat1.*pat2 any number of characters between pat1 and pat2
pat1.*pat2|pat2.*pat1 match both pat1 and pat2 in any order
non-greedy append ? to greedy quantifier

match as minimally as possible
possessive append + to greedy quantifier (regex module)

like greedy, but no backtracking
(?>pat) atomic grouping, similar to possessive quantifier
re.split(r'pat', s) split a string based on RE

maxsplit and flags are optional arguments

This chapter introduced the concept of specifying a placeholder instead of fixed string. Com-
bined with quantifiers, you’ve seen a glimpse of how a simple RE can match wide range of
text. In coming chapters, you’ll learn how to create your own restricted set of placeholder
characters.

31

Exercises

Note that some exercises are intentionally designed to be complicated to solve with regular
expressions alone. Try to use normal string methods, break down the problem into multiple
steps, etc. Some exercises will become easier to solve with techniques presented in chapters
to come. Going through the exercises a second time after finishing entire book will be fruitful
as well.

a) Use regular expression to get the output as shown for the given strings.

>>> eqn1 = 'a+42//5-c'
>>> eqn2 = 'pressure*3+42/5-14256'
>>> eqn3 = 'r*42-5/3+42///5-42/53+a'

add your solution here for eqn1
['a+', '-c']
add your solution here for eqn2
['pressure*3+', '-14256']
add your solution here for eqn3
['r*42-5/3+42///5-', '3+a']

b) For the given strings, construct a RE to get output as shown.

>>> str1 = 'a+b(addition)'
>>> str2 = 'a/b(division) + c%d(#modulo)'
>>> str3 = 'Hi there(greeting). Nice day(a(b)'

>>> remove_parentheses = re.compile() ##### add your solution here
>>> remove_parentheses.sub('', str1)
'a+b'
>>> remove_parentheses.sub('', str2)
'a/b + c%d'
>>> remove_parentheses.sub('', str3)
'Hi there. Nice day'

c) Remove leading/trailing whitespaces from all the individual fields of these csv strings.

>>> csv1 = ' comma ,separated ,values '
>>> csv2 = 'good bad,nice ice , 42 , , stall small'

add your solution here for csv1
'comma,separated,values'
add your solution here for csv2
'good bad,nice ice,42,,stall small'

d) Correct the given RE to get the expected output.

>>> words = 'plink incoming tint winter in caution sentient'
>>> change = re.compile(r'int|in|ion|ing|inco|inter|ink')

wrong output
>>> change.sub(r'X', words)
'plXk XcomXg tX wXer X cautX sentient'

32

expected output
>>> change = re.compile() ##### add your solution here
>>> change.sub(r'X', words)
'plX XmX tX wX X cautX sentient'

e) For the given greedy quantifiers, what would be the equivalent form using {m,n} repre-
sentation?

• ? is same as
• * is same as
• + is same as

f) (a*|b*) is same as (a|b)* - True or False?

33

Working with matched portions

Having seen a few features that can match varying text, you’ll learn how to extract and work
with those matching portions in this chapter.

re.Match object

The re.search function returns a re.Match object from which various details can be
extracted like the matched portion of string, location of matched portion, etc. See docs.python:
Match Objects for details.

>>> re.search(r'ab*c', 'abc ac adc abbbc')
<re.Match object; span=(0, 3), match='abc'>

>>> re.search(r'b.*d', 'abc ac adc abbbc')
<re.Match object; span=(1, 9), match='bc ac ad'>

The () grouping is also known as a capture group. It has multiple uses, one of which is the
ability to work with matched portions of those groups. When capture groups are used with
re.search , they can be retrieved using an index on the re.Match object. The first element
is always the entire matched portion and rest of the elements are for capture groups if they
are present. The leftmost (will get group number 1 , second leftmost (will get group
number 2 and so on.

>>> re.search(r'b.*d', 'abc ac adc abbbc')
<re.Match object; span=(1, 9), match='bc ac ad'>
retrieving entire matched portion
>>> re.search(r'b.*d', 'abc ac adc abbbc')[0]
'bc ac ad'
can also pass an index by calling 'group' method on the Match object
>>> re.search(r'b.*d', 'abc ac adc abbbc').group(0)
'bc ac ad'

capture group example
>>> m = re.search(r'a(.*)d(.*a)', 'abc ac adc abbbc')
to get matched portion of second capture group
>>> m[2]
'c a'
to get a tuple of all the capture groups
>>> m.groups()
('bc ac a', 'c a')

Functions can be used in replacement section of re.sub instead of a string. A re.Match
object will be passed to the function as argument. In later chapters, you’ll see a way to directly
reference the matches in replacement section string.

m[0] will contain entire matched portion
a^2 and b^2 for the two matches in this example
>>> re.sub(r'(a|b)\^2', lambda m: m[0].upper(), 'a^2 + b^2 - C*3')
'A^2 + B^2 - C*3'

34

https://docs.python.org/3/library/re.html#match-objects
https://docs.python.org/3/library/re.html#match-objects

re.findall

The re.findall function returns all the matched portions as a list.

>>> re.findall(r'ab*c', 'abc ac adc abbbc')
['abc', 'ac', 'abbbc']

>>> re.findall(r'ab+c', 'abc ac adc abbbc')
['abc', 'abbbc']

>>> re.findall(r'\bs?pare?\b', 'par spar apparent spare part pare')
['par', 'spar', 'spare', 'pare']

It is useful for debugging purposes as well, for example to see what is going on under the hood
before applying substitution.

>>> re.findall(r't.*a', 'that is quite a fabricated tale')
['that is quite a fabricated ta']

>>> re.findall(r't.*?a', 'that is quite a fabricated tale')
['tha', 't is quite a', 'ted ta']

If capture groups are used, each element of output will be a tuple of strings of all the capture
groups. Text matched by the RE outside of capture groups won’t be present in the output list.
If there is only one capture group, tuple won’t be used and each element will be the matched
portion of that capture group.

>>> re.findall(r'a(b*)c', 'abc ac adc abbc xabbbcz bbb bc abbbbbc')
['b', '', 'bb', 'bbb', 'bbbbb']

>>> re.findall(r'(x*):(y*)', 'xx:yyy x: x:yy :y')
[('xx', 'yyy'), ('x', ''), ('x', 'yy'), ('', 'y')]

re.finditer

Use re.finditer to get an iterator with re.Match objects for each matched portion.

>>> re.finditer(r'ab+c', 'abc ac adc abbbc')
<callable_iterator object at 0x7fb65e103438>
>>> m_iter = re.finditer(r'ab+c', 'abc ac adc abbbc')
>>> for m in m_iter:
... print(m)
...
<re.Match object; span=(0, 3), match='abc'>
<re.Match object; span=(11, 16), match='abbbc'>

same as: re.findall(r'(x*):(y*)', 'xx:yyy x: x:yy :y')
>>> m_iter = re.finditer(r'(x*):(y*)', 'xx:yyy x: x:yy :y')
>>> [(m[1], m[2]) for m in m_iter]
[('xx', 'yyy'), ('x', ''), ('x', 'yy'), ('', 'y')]

35

Here’s some more examples.

work with entire matched portions
>>> m_iter = re.finditer(r'ab+c', 'abc ac adc abbbc')
>>> for m in m_iter:
... print(m[0].upper())
...
ABC
ABBBC

to get start and end+1 index of entire matched portion
pass a number as argument to get span of that particular capture group
>>> m_iter = re.finditer(r'ab+c', 'abc ac adc abbbc')
>>> for m in m_iter:
... print(m.span())
...
(0, 3)
(11, 16)

Cheatsheet and Summary

Note Description

re.Match object get details like matched portions, location, etc
m[0] or m.group(0) entire matched portion of re.Match object m
m[1] or m.group(1) matched portion of first capture group
m[2] or m.group(2) matched portion of second capture group and so on
m.groups() tuple of all the capture groups’ matched portions
m.span() start and end+1 index of entire matched portion

pass a number to get span of that particular capture group
re.sub(r'pat', f, s) function f will get re.Match object as argument
re.findall(r'pat', s) returns all the matches as a list

if 1 capture group is used, only its matches are returned
1+, each element will be tuple of capture groups

re.finditer(r'pat', s) iterator with re.Match object for each match

This chapter introduced different ways to work with various matching portions of input string.
You learnt another use of groupings and you’ll see even more uses of groupings later on.

Exercises

a) For the given strings, extract the matching portion from first is to last t

>>> str1 = 'What is the biggest fruit you have seen?'
>>> str2 = 'Your mission is to read and practice consistently'
>>> expr = re.compile() ##### add your solution here

36

>>> expr ##### add your solution here
'is the biggest fruit'
>>> expr ##### add your solution here
'ission is to read and practice consistent'

b) Transform the given input strings to the expected output as shown below.

>>> row1 = '-2,5 4,+3 +42,-53 '
add your solution here
[3, 7, -11]

>>> row2 = '1.32,-3.14 634,5.63 '
add your solution here
[-1.82, 639.63]

37

Character class

This chapter will discuss how to create your own custom placeholders to match limited set of
characters and various metacharacters applicable inside character classes. You’ll also learn
about escape sequences for predefined character sets.

Custom character sets

Characters enclosed inside [] metacharacters is a character class (or set). It will result in
matching any one of those characters once. It is similar to using single character alternations
inside a grouping, but without the drawbacks of a capture group. In addition, character classes
have their own versions of metacharacters and provide special predefined sets for common use
cases. Quantifiers are applicable to character classes as well.

>>> words = ['cute', 'cat', 'cot', 'coat', 'cost', 'scuttle']

same as: r'cot|cut' or r'c(o|u)t'
>>> [w for w in words if re.search(r'c[ou]t', w)]
['cute', 'cot', 'scuttle']

same as: r'(a|e|o)+t'
>>> re.sub(r'[aeo]+t', r'X', 'meeting cute boat site foot')
'mXing cute bX site fX'

Character class metacharacters

Character classes have their own metacharacters to help define the sets succinctly. Metachar-
acters outside of character classes like ˆ , $, () etc either don’t have special meaning
or have completely different one inside the character classes. First up, the - metacharacter
that helps to define a range of characters instead of having to specify them all individually.

all digits
>>> re.findall(r'[0-9]+', 'Sample123string42with777numbers')
['123', '42', '777']

whole words made up of lowercase alphabets and digits only
>>> re.findall(r'\b[a-z0-9]+\b', 'coat Bin food tar12 best')
['coat', 'food', 'tar12', 'best']

whole words made up of lowercase alphabets, but starting with 'p' to 'z'
>>> re.findall(r'\b[p-z][a-z]*\b', 'coat tin food put stoop best')
['tin', 'put', 'stoop']

whole words made up of only 'a' to 'f' and 'p' to 't' lowercase alphabets
>>> re.findall(r'\b[a-fp-t]+\b', 'coat tin food put stoop best')
['best']

38

Character classes can also be used to construct numeric ranges. However, it is easy to miss
corner cases and some ranges are complicated to design.

numbers between 10 to 29
>>> re.findall(r'\b[12][0-9]\b', '23 154 12 26 98234')
['23', '12', '26']

numbers >= 100
>>> re.findall(r'\b[0-9]{3,}\b', '23 154 12 26 98234')
['154', '98234']

numbers >= 100 if there are leading zeros
>>> re.findall(r'\b0*[1-9][0-9]{2,}\b', '0501 035 154 12 26 98234')
['0501', '154', '98234']

If numeric range is difficult to construct, better to convert the matched portion to appropriate
numeric format first.

numbers < 350
>>> m_iter = re.finditer(r'[0-9]+', '45 349 651 593 4 204')
>>> [m[0] for m in m_iter if int(m[0]) < 350]
['45', '349', '4', '204']

note that return value is string and s[0] is used to get matched portion
>>> def num_range(s):
... return '1' if 200 <= int(s[0]) <= 650 else '0'
...

numbers between 200 and 650
note that only function name is supplied, () is not used
Match object is automatically passed as argument
>>> re.sub(r'[0-9]+', num_range, '45 349 651 593 4 204')
'0 1 0 1 0 1'

Next metacharacter is ˆ which has to specified as the first character of the character class.
It negates the set of characters, so all characters other than those specified will be matched.
As highlighted earlier, handle negative logic with care, you might end up matching more than
you wanted. Also, these examples below are all excellent places to use possessive quantifier
as there is no backtracking involved.

all non-digits
>>> re.findall(r'[^0-9]+', 'Sample123string42with777numbers')
['Sample', 'string', 'with', 'numbers']

remove first two columns where : is delimiter
>>> re.sub(r'\A([^:]+:){2}', r'', 'foo:123:bar:baz', count=1)
'bar:baz'

deleting characters at end of string based on a delimiter
>>> re.sub(r'=[^=]+\Z', r'', 'foo=42; baz=123', count=1)
'foo=42; baz'

39

Sometimes, it is easier to use positive character class and negate the re.search result
instead of using negated character class.

>>> words = ['tryst', 'fun', 'glyph', 'pity', 'why']

words not containing vowel characters
>>> [w for w in words if re.search(r'\A[^aeiou]+\Z', w)]
['tryst', 'glyph', 'why']

easier to write and maintain
>>> [w for w in words if not re.search(r'[aeiou]', w)]
['tryst', 'glyph', 'why']

Similar to other metacharacters, prefix \ to character class metacharacters to match them
literally. Some of them can be achieved by different placement as well.

- should be first or last character or escaped using \
>>> re.findall(r'\b[a-z-]{2,}\b', 'ab-cd gh-c 12-423')
['ab-cd', 'gh-c']
>>> re.findall(r'\b[a-z\-0-9]{2,}\b', 'ab-cd gh-c 12-423')
['ab-cd', 'gh-c', '12-423']

^ should be other than first character or escaped using \
>>> re.findall(r'a[+^]b', 'f*(a^b) - 3*(a+b)')
['a^b', 'a+b']
>>> re.findall(r'a[\^+]b', 'f*(a^b) - 3*(a+b)')
['a^b', 'a+b']

[can be escaped with \ or placed as last character
] can be escaped with \ or placed as first character
>>> re.search(r'[a-z\[\]0-9]+', 'words[5] = tea')[0]
'words[5]'
\ should be escaped using \
>>> print(re.search(r'[a\\b]+', r'5ba\babc2')[0])
ba\bab

Escape sequence character sets

Commonly used character sets have predefined escape sequences:

• \w is similar to [a-zA-Z0-9_] for matching word characters (recall the definition for
word boundaries)

• \d is similar to [0-9] for matching digit characters
• \s is similar to [\t\n\r\f\v] for matching whitespace characters

These escape sequences can be used as a standalone or inside a character class. Also, these
would behave differently depending on flags used (covered in a later chapter). As mentioned
before, the examples and description will assume input made up of ASCII characters only.

>>> re.split(r'\d+', 'Sample123string42with777numbers')
['Sample', 'string', 'with', 'numbers']

40

>>> re.findall(r'\d+', 'foo=5, bar=3; x=83, y=120')
['5', '3', '83', '120']

>>> ''.join(re.findall(r'\b\w', 'sea eat car rat eel tea'))
'secret'
>>> re.findall(r'[\w\s]+', 'tea sea-pit sit-lean\tbean')
['tea sea', 'pit sit', 'lean\tbean']

And negative logic strikes again, use \W , \D , and \S respectively for their negated
character class.

>>> re.sub(r'\D+', r'-', 'Sample123string42with777numbers')
'-123-42-777-'

>>> re.sub(r'\W+', r'', 'foo=5, bar=3; x=83, y=120')
'foo5bar3x83y120'

>>> re.findall(r'\S+', ' 1..3 \v\f foo_baz 42\tzzz \r\n1-2-3 ')
['1..3', 'foo_baz', '42', 'zzz', '1-2-3']

Cheatsheet and Summary

Note Description

[ae;o] match any of these characters once
quantifiers are applicable to character classes too

[3-7] range of characters from 3 to 7
[ˆ=b2] match other than = or b or 2
[a-z-] - should be first/last or escaped using \ to match literally
[+ˆ] ˆ shouldn’t be first character or escaped using \
[a\[\]] [can be escaped with \ or placed as last character
[a\[\]]] can be escaped with \ or placed as first character
[a\\b] \ should be escaped using \
\w similar to [a-zA-Z0-9_] for matching word characters
\d similar to [0-9] for matching digit characters
\s similar to [\t\n\r\f\v] for matching whitespace characters

\W , \D , and \S for their opposites respectively

This chapter focussed on how to create custom placeholders for limited set of characters.
Grouping and character classes can be considered as two levels of abstractions. On the one
hand, you can have character sets inside [] and on the other, you can have multiple alter-
nations grouped inside () including character classes. As anchoring and quantifiers can be
applied to both these abstractions, you can begin to see how regular expressions is considered
a mini-programming language. In coming chapters, you’ll even see how to negate groupings
similar to negated character class in certain scenarios.

41

Exercises

a) Delete all pair of parentheses, unless they contain a parentheses character.

>>> str1 = 'def factorial()'
>>> str2 = 'a/b(division) + c%d(#modulo) - (e+(j/k-3)*4)'
>>> str3 = 'Hi there(greeting). Nice day(a(b)'

>>> remove_parentheses = re.compile() ##### add your solution here
>>> remove_parentheses.sub('', str1)
'def factorial'
>>> remove_parentheses.sub('', str2)
'a/b + c%d - (e+*4)'
>>> remove_parentheses.sub('', str3)
'Hi there. Nice day(a'

b) Extract all hex character sequences, with optional prefix. Match the characters case insen-
sitively, and the sequences shouldn’t be surrounded by other word characters.

>>> hex_seq = re.compile() ##### add your solution here

>>> str1 = '128A foo 0xfe32 34 0xbar'
add your solution here
['128A', '0xfe32', '34']

>>> str2 = '0XDEADBEEF place 0x0ff1ce bad'
add your solution here
['0XDEADBEEF', '0x0ff1ce', 'bad']

c) Check if input string contains any number sequence that is greater than 624.

>>> str1 = 'hi0000432abcd'
add your solution here
False

>>> str2 = '42_624 0512'
add your solution here
False

>>> str3 = '3.14 96 2 foo1234baz'
add your solution here
True

d) Split the given strings based on consecutive sequence of digit or whitespace characters.

>>> str1 = 'lion \t Ink32onion Nice'
>>> str2 = '**1\f2\n3star\t7 77\r**'
>>> expr = re.compile() ##### add your solution here
>>> expr.split(str1)
['lion', 'Ink', 'onion', 'Nice']
>>> expr.split(str2)
['**', 'star', '**']

42

Groupings and backreferences

You’ve been patiently hearing more awesome stuff to come regarding groupings. Well, here
they come in various forms. And some more will come in later chapters!

First up, saving (i.e. capturing) matched portion of RE to use it later, similar to variables and
functions in a programming language. You have already seen how to use re.Match object to
refer to text captured by groups. In a similar manner, you can use backreference \N where
N is the capture group you want. Backreferences can be used within the RE definition itself
as well as in replacement section. Quantifiers can be applied to backreferences too.

In replacement section, use:

• \1 , \2 up to \99 to refer to the corresponding capture group
∘ provided there are no digit characters after
∘ \NNN will be interpreted as octal value

• \g<1> , \g<2> etc (not limited to 99) to refer to the corresponding capture group
∘ this also helps to avoid ambiguity, for example, you cannot use backreference \1
if it is followed by other digit characters

• \g<0> to refer to entire matched portion, similar to index 0 of re.Match objects
∘ \0 cannot be used because numbers starting with 0 are treated as octal value

remove square brackets that surround digit characters
>>> re.sub(r'\[(\d+)\]', r'\1', '[52] apples and [31] mangoes')
'52 apples and 31 mangoes'
replace __ with _ and delete _ if it is alone
>>> re.sub(r'(_)?_', r'\1', '_foo_ __123__ _baz_')
'foo _123_ baz'

add something around the matched strings
>>> re.sub(r'\d+', r'(\g<0>0)', '52 apples and 31 mangoes')
'(520) apples and (310) mangoes'
note the use of count flag
otherwise empty string matching with * will come into play
>>> re.sub(r'.*', r'Hi. \g<0>. Have a nice day', 'Hello world', count=1)
'Hi. Hello world. Have a nice day'

swap words that are separated by a comma
>>> re.sub(r'(\w+),(\w+)', r'\2,\1', 'good,bad 42,24')
'bad,good 24,42'

Here’s some examples for using backreferences within RE definition.

whole words that have at least one consecutive repeated character
>>> words = ['effort', 'flee', 'facade', 'oddball', 'rat', 'tool']
>>> [w for w in words if re.search(r'\b\w*(\w)\1\w*\b', w)]
['effort', 'flee', 'oddball', 'tool']
remove any number of consecutive duplicate words separated by space
quantifiers can be applied to backreferences too!
>>> re.sub(r'\b(\w+)(\1)+\b', r'\1', 'aa a a a 42 f_1 f_1 f_13.14')
'aa a 42 f_1 f_13.14'

43

Non-capturing groups

Grouping has many uses like applying quantifier on a RE portion, creating terse RE by factor-
ing common portions and so on. It also affects behavior of functions like re.findall and
re.split .

without capture group
>>> re.split(r'\d+', 'Sample123string42with777numbers')
['Sample', 'string', 'with', 'numbers']

to include the matching delimiter strings as well in the output
>>> re.split(r'(\d+)', 'Sample123string42with777numbers')
['Sample', '123', 'string', '42', 'with', '777', 'numbers']

optional argument maxsplit can be used to specify no. of splits
setting to 1 gives behavior like partition string method
>>> re.split(r'(1*2)', '3111111111125111142', maxsplit=1)
['3', '11111111112', '5111142']

When backreferencing is not required, you can use a non-capturing group to avoid behavior
change of re.findall and re.split . It also helps to avoid keeping a track of capture
group numbers when that particular group is not needed for backreferencing. The syntax is
(?:pat) to define a non-capturing group. More such special groups starting with (? syntax
will be discussed later on.

normal capture group will hinder ability to get whole match
non-capturing group to the rescue
>>> re.findall(r'\b\w*(?:st|in)\b', 'cost akin more east run against')
['cost', 'akin', 'east', 'against']

capturing wasn't needed here, only common grouping and quantifier
>>> re.split(r'hand(?:y|ful)?', '123hand42handy777handful500')
['123', '42', '777', '500']

with normal grouping, need to keep track of all the groups
>>> re.sub(r'\A(([^,]+,){3})([^,]+)', r'\1(\3)', '1,2,3,4,5,6,7', count=1)
'1,2,3,(4),5,6,7'
using non-capturing groups, only relevant groups have to be tracked
>>> re.sub(r'\A((?:[^,]+,){3})([^,]+)', r'\1(\2)', '1,2,3,4,5,6,7', count=1)
'1,2,3,(4),5,6,7'

However, there are situations where capture groups cannot be avoided. In such cases, you’d
need to manually work with re.Match objects to get desired results.

>>> words = 'effort flee facade oddball rat tool'
whole words containing at least one consecutive repeated character
>>> repeat_char = re.compile(r'\b\w*(\w)\1\w*\b')

() in findall will only return text matched by capture groups
>>> repeat_char.findall(words)
['f', 'e', 'l', 'o']

44

finditer to the rescue
>>> m_iter = repeat_char.finditer(words)
>>> [m[0] for m in m_iter]
['effort', 'flee', 'oddball', 'tool']

Named capture groups

RE can get cryptic and difficult to maintain, even for seasoned programmers. There are a few
constructs to help add clarity. One such is naming the capture groups and using that name
for backreferencing instead of plain numbers. The syntax is (?P<name>pat) for naming
the capture groups. The name used should be a valid Python identifier. Use 'name' for
re.Match objects, \g<name> in replacement section and (?P=name) for backreferencing in
RE definition. These will still behave as normal capture groups, so \N or \g<N> numbering
can be used as well.

giving names to first and second captured words
>>> re.sub(r'(?P<fw>\w+),(?P<sw>\w+)', r'\g<sw>,\g<fw>', 'good,bad 42,24')
'bad,good 24,42'

>>> sentence = 'I bought an apple'
>>> m = re.search(r'(?P<fruit>\w+)\Z', sentence)
>>> m[1]
'apple'
>>> m['fruit']
'apple'
>>> m.group('fruit')
'apple'

Subexpression calls

It may be obvious, but it should be noted that backreference will provide the string that
was matched, not the RE that was inside the capture group. For example, if ([0-9][a-f])
matches 3b , then backreferencing will give 3b and not any other valid match of RE like 8f
, 0a etc. This is akin to how variables behave in programming, only the result of expression
stays after variable assignment, not the expression itself.

The regex module provides a way to refer to the expression itself, using (?1) , (?2) etc.
This is applicable only in RE definition, not in replacement sections. This behavior is similar
to function call, and like functions this can simulate recursion as well (will be discussed later).

>>> import re, regex
>>> row = 'today,2008-03-24,food,2012-08-12,nice,5632'

with re module and manually repeating the pattern
>>> re.search(r'\d{4}-\d{2}-\d{2}.*\d{4}-\d{2}-\d{2}', row)[0]
'2008-03-24,food,2012-08-12'

with regex module and subexpression calling

45

>>> regex.search(r'(\d{4}-\d{2}-\d{2}).*(?1)', row)[0]
'2008-03-24,food,2012-08-12'

Named capture group can be used as well and called using (?&name) syntax.

>>> import regex
>>> row = 'today,2008-03-24,food,2012-08-12,nice,5632'

>>> regex.search(r'(?P<date>\d{4}-\d{2}-\d{2}).*(?&date)', row)[0]
'2008-03-24,food,2012-08-12'

Cheatsheet and Summary

Note Description

\N backreference, gives matched portion of Nth capture group
applies to both search and replacement sections
possible values: \1 , \2 up to \99 provided no more digits

\g<N> backreference, gives matched portion of Nth capture group
possible values: \g<0> , \g<1> , etc (not limited to 99)
\g<0> refers to entire matched portion

(?:pat) non-capturing group
(?P<name>pat) named capture group

refer as 'name' in re.Match object
refer as (?P=name) in search section
refer as \g<name> in replacement section

(?N) subexpression call for Nth capture group
(?&name) subexpression call for named capture group

subexpression call is regex module only, recursion also possible

This chapter covered many more features related to grouping - backreferencing to get both
variable and function like behavior, and naming the groups to add clarity. When backreference
is not needed for a particular group, use non-capturing group.

Exercises

a) The given string has fields separated by : and each field has a floating point number
followed by a , and a string. If the floating point number has only one digit precision,
append 0 and swap the strings separated by , for that particular field.

>>> row = '3.14,hi:42.5,bye:1056.1,cool:00.9,fool'
add your solution here
'3.14,hi:bye,42.50:cool,1056.10:fool,00.90'

b) Count the number of words that have at least two consecutive repeated alphabets. For
example, words like stillness and Committee but not words like root or readable
or rotational . Consider word to be as defined in regular expression parlance and any word
split across two lines should be treated as two different words.

46

>>> import urllib.request
>>> scarlet_pimpernel_link = r'https://www.gutenberg.org/cache/epub/60/pg60.txt'
>>> word_expr = re.compile() ##### add your solution here
>>> count = 0
>>> with urllib.request.urlopen(scarlet_pimpernel_link) as ip_file:
... for line in ip_file:
... for word in re.findall(rb'\w+', line):
... if word_expr.search(word):
... count += 1
...
>>> print(count)
219

c) Convert the given markdown headers to corresponding anchor tag. Consider the input
to start with one or more # characters followed by space and word characters. The name
attribute is constructed by converting the header to lowercase and replacing spaces with hy-
phens. Can you do it without using a capture group?

>>> header1 = '# Regular Expressions'
>>> header2 = '## Compiling regular expressions'

add your solution here for header1
'# Regular Expressions'
add your solution here for header2
'## Compiling regular expressions'

d) Convert the given markdown anchors to corresponding hyperlinks.
>>> anchor1 = '# Regular Expressions'
>>> anchor2 = '## Subexpression calls'

add your solution here for anchor1
'[Regular Expressions](#regular-expressions)'
add your solution here for anchor2
'[Subexpression calls](#subexpression-calls)'

e) Use appropriate regular expression function to get the expected output for the given string.

>>> str1 = 'price_42 roast:\t\n:-ice==cat\neast'
add your solution here
['price_42', ' ', 'roast', ':\t\n:-', 'ice', '==', 'cat', '\n', 'east']

47

Lookarounds

Having seen how to create custom character classes and various avatars of groupings, it is time
for learning how to create custom anchors and add conditions to a pattern within RE definition.
These assertions are also known as zero-width patterns because they add restrictions similar
to anchors and are not part of matched portions. Also, you will learn how to negate a grouping
similar to negated character sets.

Negative lookarounds

Lookaround assertions can be added in two ways - as a prefix known as lookbehind and as
a suffix known as lookahead. Syntax wise, these two ways are differentiated by adding a
< for the lookbehind version. Negative lookarounds use ! and = is used for positive
lookarounds.

• (?!pat) for negative lookahead assertion
• (?<!pat) for negative lookbehind assertion

As mentioned earlier, lookarounds are not part of matched portions and do not capture the
matched text.

change 'foo' only if it is not followed by a digit character
note that end of string satisfies the given assertion
'foofoo' has two matches as the assertion doesn't consume characters
>>> re.sub(r'foo(?!\d)', r'baz', 'hey food! foo42 foot5 foofoo')
'hey bazd! foo42 bazt5 bazbaz'

change 'foo' only if it is not preceded by _
note how 'foo' at start of string is matched as well
>>> re.sub(r'(?<!_)foo', r'baz', 'foo _foo 42foofoo')
'baz _foo 42bazbaz'

overlap example
the final _ was replaced as well as played a part in the assertion
>>> re.sub(r'(?<!_)foo.', r'baz', 'food _fool 42foo_foot')
'baz _fool 42bazfoot'

Lookarounds can be mixed with already existing anchors and other features to define truly
powerful restrictions:

change whole word only if it is not preceded by : or -
>>> re.sub(r'(?<![:-])\b\w+\b', r'X', ':cart <apple -rest ;tea')
':cart <X -rest ;X'

add space to word boundaries, but not at start or end of string
similar to: re.sub(r'\b', r' ', 'foo_baz=num1+35*42/num2').strip()
>>> re.sub(r'(?<!\A)\b(?!\Z)', r' ', 'foo_baz=num1+35*42/num2')
'foo_baz = num1 + 35 * 42 / num2'

48

Positive lookarounds

Positive lookaround syntax uses = similar to ! for negative lookaround. The complete
syntax looks like:

• (?=pat) for positive lookahead assertion
• (?<=pat) for positive lookbehind assertion

extract digits only if it is followed by ,
note that end of string doesn't qualify as this is positive assertion
>>> re.findall(r'\d+(?=,)', '42 foo-5, baz3; x-83, y-20: f12')
['5', '83']
extract digits only if it is preceded by - and followed by ; or :
>>> re.findall(r'(?<=-)\d+(?=[:;])', '42 foo-5, baz3; x-83, y-20: f12')
['20']

Lookarounds are quite handy in dealing with field based processing:

except first and last fields
>>> re.findall(r'(?<=,)[^,]+(?=,)', '1,two,3,four,5')
['two', '3', 'four']

replace empty fields with NA
note that in this case, order of lookbehind and lookahead doesn't matter
>>> re.sub(r'(?<![^,])(?![^,])', r'NA', ',1,,,two,3,,,')
'NA,1,NA,NA,two,3,NA,NA,NA'

Even though lookarounds are not part of matched portions, capture groups can be used inside
them.

>>> print(re.sub(r'(\S+\s+)(?=(\S+)\s)', r'\1\2\n', 'a b c d e'))
a b
b c
c d
d e

and of course, use non-capturing group where needed
>>> re.findall(r'(?<=(po|ca)re)\d+', 'pore42 car3 pare7 care5')
['po', 'ca']
>>> re.findall(r'(?<=(?:po|ca)re)\d+', 'pore42 car3 pare7 care5')
['42', '5']

Conditional AND

As promised earlier, lookarounds can be used to construct AND conditional.

>>> words = ['sequoia', 'subtle', 'questionable', 'exhibit', 'equation']

words containing 'b' and 'e' and 't' in any order
same as: r'b.*e.*t|b.*t.*e|e.*b.*t|e.*t.*b|t.*b.*e|t.*e.*b'
>>> [w for w in words if re.search(r'(?=.*b)(?=.*e).*t', w)]
['subtle', 'questionable', 'exhibit']

49

words containing all lowercase vowels in any order
>>> [w for w in words if re.search(r'(?=.*a)(?=.*e)(?=.*i)(?=.*o).*u', w)]
['sequoia', 'questionable', 'equation']

Variable length lookbehind

When using lookbehind assertion (either positive or negative), the pat inside the assertion
cannot imply matching variable length of text. Fixed length quantifier is allowed. Different
length alternations are not allowed, even if the individual alternations are of fixed length.
Here’s some examples to clarify these points.

allowed
>>> re.findall(r'(?<=(?:po|ca)re)\d+', 'pore42 car3 pare7 care5')
['42', '5']
>>> re.findall(r'(?<=\b[a-z]{4})\d+', 'pore42 car3 pare7 care5')
['42', '7', '5']

not allowed
>>> re.findall(r'(?<!car|pare)\d+', 'pore42 car3 pare7 care5')
re.error: look-behind requires fixed-width pattern
>>> re.findall(r'(?<=\b[a-z]+)\d+', 'pore42 car3 pare7 care5')
re.error: look-behind requires fixed-width pattern
>>> re.sub(r'(?<=\A|,)(?=,|\Z)', r'NA', ',1,,,two,3,,,')
re.error: look-behind requires fixed-width pattern

Variable length lookbehind can be addressed in multiple ways using the regex module. Some
of the variable length positive lookbehind cases can be simulated by using \K as a suffix to
the RE that is needed as lookbehind assertion.

>>> import regex

similar to: r'(?<=\b\w)\w*\W*'
text matched before \K won't be replaced
>>> regex.sub(r'\b\w\K\w*\W*', r'', 'sea eat car rat eel tea')
'secret'

replace only 3rd occurrence of 'cat'
>>> regex.sub(r'(cat.*?){2}\Kcat', r'X', 'cat scatter cater scat', count=1)
'cat scatter Xer scat'

The regex module allows using variable length lookbehind without needing any change.

>>> regex.findall(r'(?<=\b[a-z]+)\d+', 'pore42 car3 pare7 care5')
['42', '3', '7', '5']

>>> regex.sub(r'(?<=\A|,)(?=,|\Z)', r'NA', ',1,,,two,3,,,')
'NA,1,NA,NA,two,3,NA,NA,NA'

>>> regex.sub(r'(?<=(cat.*?){2})cat', r'X', 'cat scatter cater scat', count=1)
'cat scatter Xer scat'

50

Here’s some variable length negative lookbehind examples.

>>> regex.findall(r'(?<!car|pare)\d+', 'pore42 car3 pare7 care5')
['42', '5']

match 'dog' only if it is not preceded by 'cat'
>>> bool(regex.search(r'(?<!cat.*)dog', 'fox,cat,dog,parrot'))
False

match 'dog' only if it is not preceded by 'parrot'
>>> bool(regex.search(r'(?<!parrot.*)dog', 'fox,cat,dog,parrot'))
True

Negated groups

Variable length negative lookbehind can also be simulated using negative lookahead (which
doesn’t have restriction on variable length) inside a grouping and applying quantifier to match
characters one by one. This will work for both re and regex modules. This also showcases
how grouping can be negated in certain cases.

note the use of \A anchor to force matching all characters up to 'dog'
>>> bool(re.search(r'\A((?!cat).)*dog', 'fox,cat,dog,parrot'))
False
>>> bool(re.search(r'\A((?!parrot).)*dog', 'fox,cat,dog,parrot'))
True

easier to understand by checking matched portion
>>> re.search(r'\A((?!cat).)*', 'fox,cat,dog,parrot')[0]
'fox,'
>>> re.search(r'\A((?!parrot).)*', 'fox,cat,dog,parrot')[0]
'fox,cat,dog,'
>>> re.search(r'\A((?!(.)\2).)*', 'fox,cat,dog,parrot')[0]
'fox,cat,dog,pa'

As lookarounds do not consume characters, don’t use variable length lookbehind between two
patterns (assuming regex module). Use negated groups instead.

match if 'do' is not there between 'at' and 'par'
>>> bool(re.search(r'at((?!do).)*par', 'fox,cat,dog,parrot'))
False

match if 'go' is not there between 'at' and 'par'
>>> bool(re.search(r'at((?!go).)*par', 'fox,cat,dog,parrot'))
True
>>> re.search(r'at((?!go).)*par', 'fox,cat,dog,parrot')[0]
'at,dog,par'

use non-capturing group if required
>>> re.findall(r'a(?:(?!\d).)*z', 'at,baz,a2z,bad-zoo')
['at,baz', 'ad-z']

51

Cheatsheet and Summary

Note Description

lookarounds custom assertions, zero-width like anchors
(?!pat) negative lookahead assertion
(?<!pat) negative lookbehind assertion
(?=pat) positive lookahead assertion
(?<=pat) positive lookbehind assertion
(?!pat1)(?=pat2) multiple assertions can be specified next to each other in any order

as they mark a matching location without consuming characters
((?!pat).)* Negate a grouping, similar to negated character class
pat\K regex module, pat won’t be part of matching portion

regex module allows variable length lookbehinds unlike re

In this chapter, you learnt how to use lookarounds to create custom restrictions and also how
to use negated grouping. With this, most of the powerful features of regular expressions have
been covered. The special groupings seem never ending though, there’s some more of them
in coming chapters!!

Exercises

a) Remove leading and trailing whitespaces from all the individual fields of these csv strings.

>>> csv1 = ' comma ,separated ,values '
>>> csv2 = 'good bad,nice ice , 42 , , stall small'

>>> remove_whitespace = re.compile() ##### add your solution here
>>> remove_whitespace.sub('', csv1)
'comma,separated,values'
>>> remove_whitespace.sub('', csv2)
'good bad,nice ice,42,,stall small'

b) Filter all elements that satisfy all of these rules:

• should have at least two alphabets
• should have at least 3 digits
• should have at least one special character among % or * or # or $
• should not end with a whitespace character

>>> pwds = ['hunter2', 'F2H3u%9', '*X3Yz3.14\t', 'r2_d2_42', 'A $B C1234']
add your solution here
['F2H3u%9', 'A $B C1234']

c)Match strings if it contains qty followed by price but not if there is whitespace or the
string error between them.

>>> str1 = '23,qty,price,42'
>>> str2 = 'qty price,oh'
>>> str3 = '3.14,qty,6,errors,9,price,3'

52

>>> str4 = '42\nqty-6,apple-56,price-234,error'
>>> str5 = '4,price,3.14,qty,4'

>>> neg = re.compile() ##### add your solution here
>>> bool(neg.search(str1))
True
>>> bool(neg.search(str2))
False
>>> bool(neg.search(str3))
False
>>> bool(neg.search(str4))
True
>>> bool(neg.search(str5))
False

53

Flags

Just like options change the default behavior of commands used from a terminal, flags are
used to change aspects of RE. The Anchors chapter already introduced one of them. Flags
can be applied to entire RE using flags optional argument or to a particular portion of RE
using special groups. And both of these forms can be mixed up as well. In regular expression
parlance, flags are also known as modifiers.

First up, the flag to ignore case while matching alphabets. When flags argument is used,
this can be specified as re.I or re.IGNORECASE constants.

>>> bool(re.search(r'cat', 'Cat'))
False
>>> bool(re.search(r'cat', 'Cat', flags=re.IGNORECASE))
True

>>> re.findall(r'c.t', 'Cat cot CATER ScUtTLe', flags=re.I)
['Cat', 'cot', 'CAT', 'cUt']

without flag, you need to use: r'[a-zA-Z]+'
with flag, can also use: r'[A-Z]+'
>>> re.findall(r'[a-z]+', 'Sample123string42with777numbers', flags=re.I)
['Sample', 'string', 'with', 'numbers']

Use re.S or re.DOTALL to allow . metacharacter to match newline character as well.

by default, the . metacharacter doesn't match newline
>>> re.sub(r'the.*ice', r'X', 'Hi there\nHave a Nice Day')
'Hi there\nHave a Nice Day'

re.S flag will allow newline character to be matched as well
>>> re.sub(r'the.*ice', r'X', 'Hi there\nHave a Nice Day', flags=re.S)
'Hi X Day'

multiple flags can be combined using bitwise OR operator
>>> re.sub(r'the.*day', r'Bye', 'Hi there\nHave a Nice Day', flags=re.S|re.I)
'Hi Bye'

As seen earlier, re.M or re.MULTILINE flag would allow ˆ and $ anchors to match line
wise instead of whole string.

check if any line in the string starts with 'top'
>>> bool(re.search(r'^top', "hi hello\ntop spot", flags=re.M))
True

check if any line in the string ends with 'ar'
>>> bool(re.search(r'ar$', "spare\npar\ndare", flags=re.M))
True

The re.X or re.VERBOSE flag is another provision like the named capture groups to help
add clarity to RE definitions. This flag allows to use literal whitespaces for aligning purposes
and add comments after the # character to break down complex RE into multiple lines.

54

same as: rex = re.compile(r'\A((?:[^,]+,){3})([^,]+)')
note the use of triple quoted string
>>> rex = re.compile(r'''
... \A(# group-1, captures first 3 columns
... (?:[^,]+,){3} # non-capturing group to get the 3 columns
...)
... ([^,]+) # group-2, captures 4th column
... ''', flags=re.X)

>>> rex.sub(r'\1(\2)', '1,2,3,4,5,6,7', count=1)
'1,2,3,(4),5,6,7'

For precise definition, here’s the relevant quote from documentation:

Whitespace within the pattern is ignored, except when in a character class, or
when preceded by an unescaped backslash, or within tokens like *? , (?: or
(?P<...> . When a line contains a # that is not in a character class and is not
preceded by an unescaped backslash, all characters from the leftmost such #
through the end of the line are ignored.

>>> bool(re.search(r't a', 'cat and dog', flags=re.X))
False
>>> bool(re.search(r't\ a', 'cat and dog', flags=re.X))
True
>>> bool(re.search(r't[]a', 'cat and dog', flags=re.X))
True
>>> bool(re.search(r't\x20a', 'cat and dog', flags=re.X))
True

>>> re.search(r'a#b', 'foo a#b 123', flags=re.X)[0]
'a'
>>> re.search(r'a\#b', 'foo a#b 123', flags=re.X)[0]
'a#b'

Comments can also be added using (?#comment) special group.

>>> rex = re.compile(r'\A((?:[^,]+,){3})(?#3-cols)([^,]+)(?#4th-col)')

>>> rex.sub(r'\1(\2)', '1,2,3,4,5,6,7', count=1)
'1,2,3,(4),5,6,7'

To apply flags to specific portions of RE, specify them inside a special grouping syntax. This
will override the flags applied to entire RE definitions, if any. The syntax variations are:

• (?flags:pat) will apply flags only for this portion
• (?-flags:pat) will negate flags only for this portion
• (?flags-flags:pat) will apply and negate particular flags only for this portion
• (?flags) will apply flags for whole RE definition, can only be specified at start of RE
definition

∘ if anchors are needed, they should be specified after these flags

In these ways, flags can be specified precisely only where it is needed. The flags are to be

55

given as single letter lowercase version of short form constants. For example, i for re.I
and so on, except L for re.L or re.LOCALE (will be discussed later). And as can be
observed from below examples, these are not capture groups.

case-sensitive for whole RE definition
>>> re.findall(r'Cat[a-z]*\b', 'Cat SCatTeR CATER cAts')
['Cat']
case-insensitive only for '[a-z]*' portion
>>> re.findall(r'Cat(?i:[a-z]*)\b', 'Cat SCatTeR CATER cAts')
['Cat', 'CatTeR']

case-insensitive for whole RE definition using flags argument
>>> re.findall(r'Cat[a-z]*\b', 'Cat SCatTeR CATER cAts', flags=re.I)
['Cat', 'CatTeR', 'CATER', 'cAts']
case-insensitive for whole RE definition using special group
>>> re.findall(r'(?i)Cat[a-z]*\b', 'Cat SCatTeR CATER cAts')
['Cat', 'CatTeR', 'CATER', 'cAts']
case-sensitive only for 'Cat' portion
>>> re.findall(r'(?-i:Cat)[a-z]*\b', 'Cat SCatTeR CATER cAts', flags=re.I)
['Cat', 'CatTeR']

Cheatsheet and Summary

Note Description

re.IGNORECASE or re.I flag to ignore case
re.DOTALL or re.S allow . metacharacter to match newline character
flags=re.S|re.I multiple flags can be combined using | operator
re.MULTILINE or re.M allow ˆ and $ anchors to match line wise
re.VERBOSE or re.X allows to use literal whitespaces for aligning purposes

and to add comments after the # character
escape spaces and # if needed as part of actual RE

(?#comment) another way to add comments, not a flag
(?flags:pat) inline flags only for this pat , overrides flags argument

where flags is i for re.I , s for re.S , etc
except L for re.L

(?-flags:pat) negate flags only for this pat
(?flags-flags:pat) apply and negate particular flags only for this pat
(?flags) apply flags for whole RE, can be used only at start of RE

anchors if any, should be specified after these flags

This chapter showed some of the flags that can be used to change default behavior of RE
definition. And more special groupings were covered.

56

Exercises

a) Delete from the string start if it is at beginning of a line up to the next occurrence of the
string end at end of a line. Match these keywords irrespective of case.

>>> para = '''\
... good start
... start working on that
... project you always wanted
... to, do not let it end
... hi there
... start and end the end
... 42
... Start and try to
... finish the End
... bye'''

>>> expr = re.compile() ##### add your solution here
>>> print(expr.sub('', para))
good start

hi there

42

bye

b) Explore what the re.DEBUG flag does. Here’s some examples, check their output.

• re.compile(r'\Aden|ly\Z', flags=re.DEBUG)
• re.compile(r'\b(0x)?[\da-f]+\b', flags=re.DEBUG)
• re.compile(r'\b(?:0x)?[\da-f]+\b', flags=re.I|re.DEBUG)

57

Unicode

So far in the book, all examples were meant for strings made up of ASCII characters only.
However, re module matching is Unicode by default. See docs.python: Unicode for a tutorial
on Unicode support in Python.

Flags can be used to override the default setting. For example, the re.A or re.ASCII flag
will change \b , \w , \d , \s and their opposites to match only ASCII characters. Use
re.L or re.LOCALE to work based on locale settings for bytes data type.

\w is Unicode aware
>>> re.findall(r'\w+', 'fox:αλεπού')
['fox', 'αλεπού']

restrict matching to only ASCII characters
>>> re.findall(r'\w+', 'fox:αλεπού', flags=re.A)
['fox']
or, explicitly define the characters to match using character class
>>> re.findall(r'[a-zA-Z0-9_]+', 'fox:αλεπού')
['fox']

However, the four characters shown below are also matched when re.I is used without
re.A flag.

>>> bool(re.search(r'[a-zA-Z]', 'İıſK'))
False

>>> re.search(r'[a-z]+', 'İıſK', flags=re.I)[0]
'İıſK'

>>> bool(re.search(r'[a-z]', 'İıſK', flags=re.I|re.A))
False

Unicode character sets

Similar to named character classes and escape sequences, the regex module supports
\p{} construct that offers various predefined sets to work with Unicode strings. See regular-
expressions: Unicode for details.

extract all consecutive letters
>>> regex.findall(r'\p{L}+', 'fox:αλεπού,eagle:αετός')
['fox', 'αλεπού', 'eagle', 'αετός']
extract all consecutive Greek letters
>>> regex.findall(r'\p{Greek}+', 'fox:αλεπού,eagle:αετός')
['αλεπού', 'αετός']

extract all words
>>> regex.findall(r'\p{Word}+', 'φοο12,βτ_4,foo')
['φοο12', 'βτ_4', 'foo']

58

https://docs.python.org/3/howto/unicode.html
https://www.regular-expressions.info/unicode.html
https://www.regular-expressions.info/unicode.html

delete all characters other than letters
\p{^L} can also be used instead of \P{L}
>>> regex.sub(r'\P{L}+', r'', 'φοο12,βτ_4,foo')
'φοοβτfoo'

For generic Unicode character ranges, specify 4-hexdigits codepoint using \u or 8-hexdigits
codepoint using \U

to get codepoints for ASCII characters
>>> [hex(ord(c)) for c in 'fox']
['0x66', '0x6f', '0x78']
to get codepoints for Unicode characters
>>> [c.encode('unicode_escape') for c in 'αλεπού']
[b'\\u03b1', b'\\u03bb', b'\\u03b5', b'\\u03c0', b'\\u03bf', b'\\u03cd']
>>> [c.encode('unicode_escape') for c in 'İıſK']
[b'\\u0130', b'\\u0131', b'\\u017f', b'\\u212a']

character range example using \u
all english lowercase letters
>>> re.findall(r'[\u0061-\u007a]+', 'fox:αλεπού,eagle:αετός')
['fox', 'eagle']

Cheatsheet and Summary

Note Description

docs.python: Unicode tutorial on Unicode support in Python
re.ASCII or re.A match only ASCII characters for \b , \w , \d , \s

and their opposites, only for Unicode patterns
re.LOCALE or re.L use locale settings for byte patterns and 8-bit locales
İıſK characters that can match if re.I is used but not re.A
\p{} Unicode character sets provided by regex module

see regular-expressions: Unicode for details
\P{L} or \p{ˆL} match characters other than \p{L} set
hex(ord(c)) get codepoint for ASCII character c
c.encode('unicode_escape') get codepoint for Unicode character c
\uXXXX codepoint defined using 4-hexdigits
\UXXXXXXXX codepoint defined using 8-hexdigits

A comprehensive discussion on RE usage with Unicode characters is out of scope for this
book. Resources like regular-expressions: unicode and Programmers introduction to Unicode
are recommended for further study.

Exercises

a) Output True or False depending on input string made up of ASCII characters or not.
Consider the input to be non-empty strings and any character that isn’t part of 7-bit ASCII set

59

https://docs.python.org/3/howto/unicode.html
https://www.regular-expressions.info/unicode.html
https://www.regular-expressions.info/unicode.html
http://reedbeta.com/blog/programmers-intro-to-unicode/

should give False

>>> str1 = '123—456'
>>> str2 = 'good fοοd'
>>> str3 = 'happy learning!'
>>> str4 = 'İıſK'

add your solution here for str1
False
add your solution here for str2
False
add your solution here for str3
True
add your solution here for str4
False

60

Miscellaneous

This chapter will cover some more features and useful tricks. Except first two sections, rest
are all features provided by the regex module.

Using dict

Using a function in replacement section, you can specify a dict variable to determine the
replacement string based on the matched text.

one to one mappings
>>> d = { '1': 'one', '2': 'two', '4': 'four' }
>>> re.sub(r'[124]', lambda m: d[m[0]], '9234012')
'9two3four0onetwo'

if the matched text doesn't exist as a key, default value will be used
>>> re.sub(r'\d', lambda m: d.get(m[0], 'X'), '9234012')
'XtwoXfourXonetwo'

For swapping two or more portions without using intermediate result, using a dict is rec-
ommended.

>>> swap = { 'cat': 'tiger', 'tiger': 'cat' }
>>> words = 'cat tiger dog tiger cat'

replace word if it exists as key, else leave it as is
>>> re.sub(r'\w+', lambda m: swap.get(m[0], m[0]), words)
'tiger cat dog cat tiger'

or, build the alternation list manually for simple cases
>>> re.sub(r'cat|tiger', lambda m: swap[m[0]], words)
'tiger cat dog cat tiger'

For dict that have many entries and likely to undergo changes during development, building
alternation list manually is not a good choice. Also, recall that as per precedence rules, longest
length string should come first.

>>> d = { 'hand': 1, 'handy': 2, 'handful': 3, 'a^b': 4 }

take care of metacharacter escaping first
>>> words = [re.escape(k) for k in d.keys()]
build alternation list
add anchors and flags as needed to construct the final RE
>>> '|'.join(sorted(words, key=len, reverse=True))
'handful|handy|hand|a\\^b'

61

re.subn

The re.subn function returns a tuple of modified string after substitution and number of
substitutions made. This can be used to perform conditional operations based on whether the
substitution was successful. Or, the value of count itself may be needed for solving the given
problem.

>>> word = 'coffining'
recursively delete 'fin'
>>> while True:
... word, cnt = re.subn(r'fin', r'', word)
... if cnt == 0:
... break
...
>>> word
'cog'

Here’s an example that won’t work if greedy quantifier is used instead of possessive quantifier.

>>> row = '421,foo,2425,42,5,foo,6,6,42'

lookarounds used to ensure start/end of column matching
possessive quantifier used to ensure partial column is not captured
if a column has same text as another column, the latter column is deleted
>>> while True:
... row, cnt = regex.subn(r'(?<=\A|,)([^,]++).*\K,\1(?=,|\Z)', r'', row)
... if cnt == 0:
... break
...
>>> row
'421,foo,2425,42,5,6'

\G anchor

The \G anchor (provided by regex module) restricts matching from start of string like the
\A anchor. In addition, after a match is done, ending of that match is considered as the new
anchor location. This process is repeated again and continues until the given RE fails to match
(assuming multiple matches with sub , findall etc).

all non-whitespace characters from start of string
>>> regex.findall(r'\G\S', '123-87-593 42 foo')
['1', '2', '3', '-', '8', '7', '-', '5', '9', '3']
>>> regex.sub(r'\G\S', r'*', '123-87-593 42 foo')
'********** 42 foo'

all digits and optional hyphen combo from start of string
>>> regex.findall(r'\G\d+-?', '123-87-593 42 foo')
['123-', '87-', '593']
>>> regex.sub(r'\G(\d+)(-?)', r'(\1)\2', '123-87-593 42 foo')
'(123)-(87)-(593) 42 foo'

62

all word characters from start of string
only if it is followed by word character
>>> regex.findall(r'\G\w(?=\w)', 'cat12 bat pin')
['c', 'a', 't', '1']
>>> regex.sub(r'\G\w(?=\w)', r'\g<0>:', 'cat12 bat pin')
'c:a:t:1:2 bat pin'

all lowercase alphabets or space from start of string
>>> regex.sub(r'\G[a-z]', r'(\g<0>)', 'par tar-den hen-food mood')
'(p)(a)(r)()(t)(a)(r)-den hen-food mood'

Recursive matching

The subexpression call special group was introduced as analogous to function call. And in
typical function fashion, it does support recursion. Useful to match nested patterns, which is
usually not recommended to be done with regular expressions. Indeed, use a proper parser
library if you are looking to parse file formats like html, xml, json, csv, etc. But for some cases,
a parser might not be available and using RE might be simpler than writing a parser from
scratch.

First up, a RE to match a set of parentheses that is not nested (termed as level-one RE for
reference).

note the use of possessive quantifier
>>> eqn0 = 'a + (b * c) - (d / e)'
>>> regex.findall(r'\([^()]++\)', eqn0)
['(b * c)', '(d / e)']

>>> eqn1 = '((f+x)^y-42)*((3-g)^z+2)'
>>> regex.findall(r'\([^()]++\)', eqn1)
['(f+x)', '(3-g)']

Next, matching a set of parentheses which may optionally contain any number of non-nested
sets of parentheses (termed as level-two RE for reference). See debuggex for a railroad
diagram, notice the recursive nature of this RE.

>>> eqn1 = '((f+x)^y-42)*((3-g)^z+2)'
note the use of non-capturing group
>>> regex.findall(r'\((?:[^()]++|\([^()]++\))++\)', eqn1)
['((f+x)^y-42)', '((3-g)^z+2)']

>>> eqn2 = 'a + (b) + ((c)) + (((d)))'
>>> regex.findall(r'\((?:[^()]++|\([^()]++\))++\)', eqn2)
['(b)', '((c))', '((d))']

That looks very cryptic. Better to use regex.X flag for clarity as well as for comparing
against the recursive version. Breaking down the RE, you can see (and) have to be
matched literally. Inside that, valid string is made up of either non-parentheses characters or
a non-nested parentheses sequence (level-one RE).

63

https://www.debuggex.com/r/SMLRfiyt0Ag2hXu5

>>> lvl2 = regex.compile('''
... \(#literal (
... (?: #start of non-capturing group
... [^()]++ #non-parentheses characters
... | #OR
... \([^()]++\) #level-one RE
...)++ #end of non-capturing group, 1 or more times
... \) #literal)
... ''', flags=regex.X)

>>> lvl2.findall(eqn1)
['((f+x)^y-42)', '((3-g)^z+2)']

>>> lvl2.findall(eqn2)
['(b)', '((c))', '((d))']

To recursively match any number of nested sets of parentheses, use a capture group and call
it within the capture group itself. Since entire RE needs to be called here, you can use the
default zeroth capture group (this also helps to avoid having to use finditer). Comparing
with level-two RE, the only change is that (?0) is used instead of the level-one RE in the
second alternation.

>>> lvln = regex.compile('''
... \(#literal (
... (?: #start of non-capturing group
... [^()]++ #non-parentheses characters
... | #OR
... (?0) #recursive call
...)++ #end of non-capturing group, 1 or more times
... \) #literal)
... ''', flags=regex.X)

>>> lvln.findall(eqn0)
['(b * c)', '(d / e)']

>>> lvln.findall(eqn1)
['((f+x)^y-42)', '((3-g)^z+2)']

>>> lvln.findall(eqn2)
['(b)', '((c))', '(((d)))']

>>> eqn3 = '(3+a) * ((r-2)*(t+2)/6) + 42 * (a(b(c(d(e)))))'
>>> lvln.findall(eqn3)
['(3+a)', '((r-2)*(t+2)/6)', '(a(b(c(d(e)))))']

Named character sets

A named character set is defined by a name enclosed between [: and :] and has to be
used within a character class [] , along with any other characters as needed. Using [:ˆ

64

instead of [: will negate the named character set. See regular-expressions: POSIX Bracket
for full list, and refer to pypi: regex for notes on Unicode.

similar to: r'\d+' or r'[0-9]+'
>>> regex.split(r'[[:digit:]]+', 'Sample123string42with777numbers')
['Sample', 'string', 'with', 'numbers']
similar to: r'[a-zA-Z]+'
>>> regex.sub(r'[[:alpha:]]+', r':', 'Sample123string42with777numbers')
':123:42:777:'

similar to: r'[\w\s]+'
>>> regex.findall(r'[[:word:][:space:]]+', 'tea sea-pit sit-lean\tbean')
['tea sea', 'pit sit', 'lean\tbean']
similar to: r'\S+'
>>> regex.findall(r'[[:^space:]]+', 'tea sea-pit sit-lean\tbean')
['tea', 'sea-pit', 'sit-lean', 'bean']

words not surrounded by punctuation characters
>>> regex.findall(r'(?<![[:punct:]])\b\w+\b(?![[:punct:]])', 'tie. ink eat;')
['ink']

Character class set operations

There are two versions provided by regex module - by default version 0 is used, which
is meant for compatibility with re module. Many features, like set operations, require
version 1 to be enabled. That can be done by assigning regex.DEFAULT_VERSION to
regex.VERSION1 (permanent) or using (?V1) flag (temporary). To get back the compat-
ible version, use regex.VERSION0 or (?V0)

Set operations can be applied inside character class between sets. Mostly used to get in-
tersection or difference between two sets, where one/both of them is a character range or
predefined character set. To aid in such definitions, you can use [] in nested fashion. The
four operators, in increasing order of precedence, are:

• || union
• ~~ symmetric difference
• && intersection
• -- difference

[^aeiou] will match any non-vowel character
which means space is also a valid character to be matched
>>> re.findall(r'\b[^aeiou]+\b', 'tryst glyph pity why')
['tryst glyph ', ' why']
intersection or difference can be used here
to get a positive definition of characters to match
>>> regex.findall(r'(?V1)\b[a-z&&[^aeiou]]+\b', 'tryst glyph pity why')
['tryst', 'glyph', 'why']

[[a-l]~~[g-z]] is same as [a-fm-z]
>>> regex.findall(r'(?V1)\b[[a-l]~~[g-z]]+\b', 'gets eat top sigh')

65

https://www.regular-expressions.info/posixbrackets.html
https://pypi.org/project/regex/

['eat', 'top']

remove all punctuation characters except . ! and ?
>>> para = '"Hi", there! How *are* you? All fine here.'
>>> regex.sub(r'(?V1)[[:punct:]--[.!?]]+', r'', para)
'Hi there! How are you? All fine here.'

These set operations may get added to re module in future.

Skipping matches

Sometimes, you want to change or extract all matches except particular matches. Usually,
there are common characteristics between the two types of matches that makes it hard or
impossible to define RE only for the required matches. For example, changing field values
unless it is a particular name, or perhaps don’t touch double quoted values and so on. To
use the skipping feature, define the matches to be ignored suffixed by (*SKIP)(*FAIL) and
then define the matches required as part of alternation. (*F) can also be used instead of
(*FAIL) .

change lowercase words other than imp or rat
>>> words = 'tiger imp goat eagle rat'
>>> regex.sub(r'\b(?:imp|rat)\b(*SKIP)(*F)|[a-z]++', r'(\g<0>)', words)
'(tiger) imp (goat) (eagle) rat'

change all commas other than those inside double quotes
>>> row = '1,"cat,12",nice,two,"dog,5"'
>>> regex.sub(r'"[^"]++"(*SKIP)(*F)|,', r'|', row)
'1|"cat,12"|nice|two|"dog,5"'

Cheatsheet and Summary

Note Description

using dict replacement string based on the matched text as dictionary key
ex: re.sub(r'pat', lambda m: d.get(m[0], default), s)

re.subn() gives tuple of modified string and number of substitutions
\G regex module, restricts matching from start of string like \A

continues matching from end of match as new anchor until it fails
ex: regex.findall(r'\G\d+-?', '12-34 42') gives ['12-', '34']

subexpression call regex module, helps to define recursive matching
ex: r'\((?:[ˆ()]++|(?0))++\)' matches nested sets of parentheses

[[:digit:]] regex module, named character set for \d
[[:ˆdigit:]] to indicate \D

See regular-expressions: POSIX Bracket for full list
(?V1) inline flag to enable version 1 for regex module

regex.DEFAULT_VERSION=regex.VERSION1 can also be used
(?V0) or regex.VERSION0 to get back default version

66

https://www.regular-expressions.info/posixbrackets.html

Note Description

set operations V1 enables this feature for character classes, nested [] allowed
|| union
~~ symmetric difference
&& intersection
-- difference

ex: (?V1)[[:punct:]--[.!?]] punctuation except . ! and ?
pat(*SKIP)(*F) regex module, ignore text matched by pat

ex: "[ˆ"]++"(*SKIP)(*F)|, will match , but not inside
double quoted pairs

This is a miscellaneous chapter, not able to think of a good catchy summary to write. Here’s a
suggestion - write a summary in your own words based on notes you’ve made for this chapter.

Exercises

a) Count the maximum depth of nested braces for the given string. Unbalanced or wrongly
ordered braces should return -1

>>> def max_nested_braces(ip):
add your solution here

>>> max_nested_braces('a*b')
0
>>> max_nested_braces('}a+b{')
-1
>>> max_nested_braces('a*b+{}')
1
>>> max_nested_braces('{{a+2}*{b+c}+e}')
2
>>> max_nested_braces('{{a+2}*{b+{c*d}}+e}')
3
>>> max_nested_braces('{{a+2}*{\n{b+{c*d}}+e*d}}')
4
>>> max_nested_braces('a*{b+c*{e*3.14}}}')
-1

b) Replace the string par with spar , spare with extra and park with garden

>>> str1 = 'apartment has a park'
add your solution here for str1
'aspartment has a garden'

>>> str2 = 'do you have a spare cable'
add your solution here for str2
'do you have a extra cable'

>>> str3 = 'write a parser'

67

add your solution here for str3
'write a sparser'

c) Read about POSIX flag from regex module documentation. Is the following code snippet
showing the correct output?

>>> words = 'plink incoming tint winter in caution sentient'
>>> change = regex.compile(r'int|in|ion|ing|inco|inter|ink', flags=regex.POSIX)
>>> change.sub(r'X', words)
'plX XmX tX wX X cautX sentient'

d) For the givenmarkdown file, replace all occurrences of the string python (irrespective of
case) with the string Python . However, any match within code blocks that start with whole
line ```python and end with whole line ``` shouldn’t be replaced. Consider the input file
to be small enough to fit memory requirements.

Refer to exercises folder for files required to solve this exercise.

>>> ip_str = open('sample.md', 'r').read()
>>> expr = regex.compile() ##### add your solution here
>>> with open('sample_mod.md', 'w') as op_file:
... op_file.write(expr.sub(lambda m: m[0].capitalize(), ip_str))
...
305
>>> assert open('sample_mod.md').read() == open('expected.md').read()

68

https://pypi.org/project/regex/
https://github.com/learnbyexample/py_regular_expressions/tree/master/exercises

Gotchas

RE can get quite complicated and cryptic a lot of the times. But sometimes, if something is
not working as expected, it could be because of quirky corner cases.

Some RE engines match character literally if an escape sequence is not defined. Python
raises an exception for such cases. Apart from sequences defined for RE, these are allowed:
\a \b \f \n \r \t \u \U \v \x \\ where \b means backspace only in character classes
and \u \U are valid only in Unicode patterns.

>>> bool(re.search(r'\t', 'cat\tdog'))
True
>>> bool(re.search(r'\c', 'cat\tdog'))
re.error: bad escape \c at position 0

There is an additional start/end of line match after last newline character if line anchors are
used as standalone pattern. End of line match after newline is straightforward to understand
as $ matches both end of line and end of string.

note also the use of special group for enabling multiline flag
>>> print(re.sub(r'(?m)^', r'foo ', '1\n2\n'))
foo 1
foo 2
foo

>>> print(re.sub(r'(?m)$', r' baz', '1\n2\n'))
1 baz
2 baz
baz

How much does * or *+ match?

there is an extra empty string match at end of matches
>>> re.sub(r'[^,]*', r'{\g<0>}', ',cat,tiger')
'{},{cat}{},{tiger}{}'
>>> regex.sub(r'[^,]*+', r'{\g<0>}', ',cat,tiger')
'{},{cat}{},{tiger}{}'

use lookarounds as a workaround
>>> re.sub(r'(?<![^,])[^,]*', r'{\g<0>}', ',cat,tiger')
'{},{cat},{tiger}'

Referring to text matched by a capture group with a quantifier will give only the last match,
not entire match. Use a non-capturing group inside a capture group to get the entire matched
portion.

>>> re.sub(r'\A([^,]+,){3}([^,]+)', r'\1(\2)', '1,2,3,4,5,6,7', count=1)
'3,(4),5,6,7'
>>> re.sub(r'\A((?:[^,]+,){3})([^,]+)', r'\1(\2)', '1,2,3,4,5,6,7', count=1)
'1,2,3,(4),5,6,7'

as mentioned earlier, findall can be useful for debugging purposes
>>> re.findall(r'([^,]+,){3}', '1,2,3,4,5,6,7')

69

['3,', '6,']
>>> re.findall(r'(?:[^,]+,){3}', '1,2,3,4,5,6,7')
['1,2,3,', '4,5,6,']

When using flags options with regex module, the constants should also be used from
regex module. A typical workflow shown below:

Using re module, unsure if a feature is available
>>> re.findall(r'[[:word:]]+', 'fox:αλεπού,eagle:αετός', flags=re.A)
__main__:1: FutureWarning: Possible nested set at position 1
[]
Ok, convert re to regex
Oops, output is still wrong
>>> regex.findall(r'[[:word:]]+', 'fox:αλεπού,eagle:αετός', flags=re.A)
['fox', 'αλεπού', 'eagle', 'αετός']

Finally correct solution, the constant had to be changed as well
>>> regex.findall(r'[[:word:]]+', 'fox:αλεπού,eagle:αετός', flags=regex.A)
['fox', 'eagle']

Speaking of flags , try to always use it as keyword argument. Using it as positional argument
leads to a commonmistake between re.findall and re.sub due to difference in placement.
Their syntax, as per the docs, is shown below:

re.findall(pattern, string, flags=0)

re.sub(pattern, repl, string, count=0, flags=0)

Hope you have found Python regular expressions an interesting topic to learn. Sooner or
later, you’ll need to use them if you are facing plenty of text processing tasks. At the same
time, knowing when to use normal string methods and knowing when to reach for other text
parsing modules is important. Happy coding!

70

Further Reading

Note that most of these resources are not specific to Python, so use them with caution and
check if they apply to Python’s syntax and features.

• docs.python: Regular Expression HOWTO
• stackoverflow: python regex
• CommonRegex - collection of common regular expressions
• Generate strings that match a given regular expression
• stackoverflow: regex FAQ

∘ stackoverflow: regex tag is a good source of exercise questions
• rexegg - tutorials, tricks and more
• regular-expressions - tutorials and tools
• regexcrossword - tutorials and puzzles
• regex101 - visual aid and online testing tool for regular expressions, select flavor as
Python before use

• debuggex - railroad diagrams for regular expressions, select flavor as Python before use
• swtch - stuff about regular expression implementation engines

Here’s some links for specific topics:

• rexegg: best regex trick
• regular-expressions: matching numeric ranges
• regular-expressions: Continuing at The End of The Previous Match
• regular-expressions: Zero-Length Matches
• stackoverflow: Greedy vs Reluctant vs Possessive Quantifiers
• stackoverflow: named captures as a dict
• stackoverflow: Is it worth using re.compile?
• cloudflare: Details of the Cloudflare outage on July 2, 2019 - see appendix for details
about CPU exhaustion caused due to regular expression backtracking

71

https://docs.python.org/3/howto/regex.html
https://stackoverflow.com/questions/tagged/python+regex?sort=votes&pageSize=15
https://github.com/madisonmay/CommonRegex
https://stackoverflow.com/questions/492716/reversing-a-regular-expression-in-python
https://stackoverflow.com/questions/22937618/reference-what-does-this-regex-mean
https://stackoverflow.com/questions/tagged/regex
https://www.rexegg.com/
https://www.regular-expressions.info/
https://regexcrossword.com/
https://regex101.com/
https://www.debuggex.com
https://swtch.com/~rsc/regexp/regexp1.html
https://www.rexegg.com/regex-best-trick.html
https://www.regular-expressions.info/numericranges.html
https://www.regular-expressions.info/continue.html
https://www.regular-expressions.info/zerolength.html
https://stackoverflow.com/questions/5319840/greedy-vs-reluctant-vs-possessive-quantifiers
https://stackoverflow.com/questions/11103856/re-findall-which-returns-a-dict-of-named-capturing-groups
https://stackoverflow.com/questions/452104/is-it-worth-using-pythons-re-compile
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

	Preface
	Prerequisites
	Acknowledgements
	Feedback and Errata
	Author info
	License
	Book version

	Why is it needed?
	Regular Expression modules
	re module
	Compiling regular expressions
	bytes
	regex module
	Cheatsheet and Summary
	Exercises

	Anchors
	String anchors
	Line anchors
	Word anchors
	Cheatsheet and Summary
	Exercises

	Alternation and Grouping
	Precedence rules
	Cheatsheet and Summary
	Exercises

	Escaping metacharacters
	Cheatsheet and Summary
	Exercises

	Dot metacharacter and Quantifiers
	Dot metacharacter
	Greedy quantifiers
	Non-greedy quantifiers
	Possessive quantifiers
	Cheatsheet and Summary
	Exercises

	Working with matched portions
	re.Match object
	re.findall
	re.finditer
	Cheatsheet and Summary
	Exercises

	Character class
	Custom character sets
	Character class metacharacters
	Escape sequence character sets
	Cheatsheet and Summary
	Exercises

	Groupings and backreferences
	Non-capturing groups
	Named capture groups
	Subexpression calls
	Cheatsheet and Summary
	Exercises

	Lookarounds
	Negative lookarounds
	Positive lookarounds
	Conditional AND
	Variable length lookbehind
	Negated groups
	Cheatsheet and Summary
	Exercises

	Flags
	Cheatsheet and Summary
	Exercises

	Unicode
	Unicode character sets
	Cheatsheet and Summary
	Exercises

	Miscellaneous
	Using dict
	re.subn
	\G anchor
	Recursive matching
	Named character sets
	Character class set operations
	Skipping matches
	Cheatsheet and Summary
	Exercises

	Gotchas
	Further Reading

